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Abstract

Equalization structures for maximum likelihood (ML) recep-
tion of data transmitted over intersymbol interference chan-
nels are studied in this paper. Complexity constraints that
are appropriate for multicarrier demodulators are imposed
in the derivation of the corresponding front-end equalization
structures that maximize a measure of performance for ML
receivers. The equalizer that is best for the ML receiver is
derived from a general theory of decision-aided equalization.

While a theory of decision-aided equalization is used, the
resulting optimum equalizers are linear and do not use previ-
ous decisions. If the equalizer complexity is permitted to be
infinite (but the ML detector complexity is finite), then a gen-
eral optimum class of structures is derived that includes the
well-known decision feedback equalizer (DFE) and the lesser-
known autoregressive moving average (ARMA) filters. When
a complexity constraint is also imposed on the equalizer, one
of the structures in this class will be best for a given ML
receiver. The best structure is found by a simple search pro-
cedure given herein. Our results indicate that near-optimum
performance can be achieved using the approach in this paper
at a great computational reduction.

1 Introduction

Maximum likelihood (ML) receivers that minimize probabil-
ity of error in data transmission over channels with intersym-
bol interference can be realized in two popular forms, mul-
ticarrier demodulators or sequence (Viterbi) detectors. Mul-
ticarrier modulation/demodulation methods have long been
known as optimum on the intersymbol interference chan-
nel [1] because they directly implement maximum likelihood
(ML) detection for the given transmitted signal (which is a
sum of independently modulated subcarrier signals, whence
the name “multicarrier”). Multicarrier methods require an
infinite number of subcarriers to be used to achieve data
rates near capacity [2]. Sequence (Viterbi) detectors are com-
paratively less ancient [3], and can be used to implement
maximum-likelihood detection for single-carrier or baseband
data transmission systems. Sequence detectors also require
an infinite number of states to decode transmitted signals at
rates near capacity on a bandlimited (or intersymbol interfer-
ence) channel. The transmission engineer is then invariably
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Figure 1: Input-assisted equalization.

left with the problem of trying to design a transmission sys-
tem that exhibits performance as close to optimum as pos-
sible for given finite cost of implementation. The solution
to this problem often leads to approximation of ML perfor-
mance with a finite-complexity receiver. This paper focuses
on one approach to this problem that approximates optimum
performance with a significantly reduced complexity receiver
that consists of a finite-complexity ML detector and a corre-
sponding front-end equalizer. We will focus on multicarrier
in this short conference paper, but note that the same equal-
izer is also optimum in a parallel sense for sequence detection
in a more complete version of this paper.

The measure of complexity for an ML detector will be
specified by v, the order of a finite-length polynomial that
is used in the design of the finite-complexity ML receiver.
That is, both sequence detectors and multicarrier receivers
need specification of some polynomial §(D) = YV _; b D™
that is used to approximate the bandlimited channel charac-
teristic at some sampling rate (and D is the complex delay
variable corresponding to that sampling rate) in the discrete-
time approximation to the channel. The multicarrier receiver
requires a block length N (basically twice the number of sub-
carriers) that is significantly larger than v to implement the
receiver without significant rate loss (a factor of v/(N + v)
in multicarrier implementations). The sequence detector re-
quires M"Y states where M is the number of transmitted
symbol levels in a single-carrier or baseband transmission
method. In both ML receivers, receiver cost is dominated
by elements that depend directly on v so that a fixed cost of
implementation will force a given maximum value of v that
can be tolerated in the design. With v as the complexity con-
straint parameter, the function of an equalizer is then to filter
the channel so that the combined equalizer-channel charac-
teristic closely approximates a b(D) that is chosen as the
best b(D) for the given channel. This concept is generically
illustrated in Figure 1. For a given channel length of v 4 1
samples, we need to find the best polynomial (D) and equal-
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izer so that the ML detector performance is optimized when
designed for that (D). We will suggest that the best such
choice of (nonzero) b(D) minimizes the mean square error
between the equalizer output and the filtered channel-input
sequence z(D)b(D) in Section 2.

Section 2 also introduces notation and discusses a general
approach to decision-aided equalization, paralleling some ear-
lier developments of [4], but continues on that earlier theory
by focusing on only those receivers that can be implemented
without need for any previous or future decisions. We derive
in Section 2 a class of equalization structures that all have
the same performance, and this class is found to include the
MS-WMF that was conjectured in [5] to be a canonical re-
ceiver front-end, and the so-called Auto-Regressive Moving
Average (ARMA)-based filter that was empirically found in
[6] to be a good front-end for some multicarrier implementa-
tions. This class is also believed to include structures that
are the infinite-length limits of some earlier systems derived
by Zervos [7], [8] for M-ary single-carrier transmission on in-
tersymbol interference channels. Our structures differ from
those of Zervos in that the equalization filtering and the ML
detection are separable, for instance permitting the use of
the same equalizer with ML multicarrier demodulator or a
sequence detector. This motivates our investigation of the
case for finite v in Section 3.

In Section 3, by constraining not only », but also the com-
plexity of the equalizer, we find the optimum finite-impulse-
response equalizer settings.! In this finite-length case, the
relative delay characteristics of the equalizer and of b(D) be-
come crucial, especially as v and the length of the equalizer
become increasingly constrained. We introduce a search pro-
cedure that determines the best of the relative delay char-
acteristics and quite often produces an equalizer that is not
closely related to the feedforward filter of decision feedback,
the latter of which might have been a designer’s choice pre-
vious to the results of this paper.

With the results of Section 3, it is possible to analyze spe-
cific transmission channels and to ascertain the minimum
v and equalizer settings to approximate infinite-complexity
performance closely. We often find the computation reduc-
tion is very large compared to the straightforward ML imple-
mentation and that the resulting reduced complexity is com-
parable (or often even less complex) to previous suboptimal
equalization approaches. In Section 4, we consider an actual
design example that is based on a study of digital subscriber
loops. Significant complexity reduction occurs for negligible
performance loss with respect to the optimum.

2 Infinite-Length Equalizers
The general baseband complex decision-aided, or in our study

input-aided, equalization problem appeared in Figure 1.
The channel output §(t) is modelled as

§(t) =Y zmp(t — mT) + n(t) )

1 We note this deviates from an earlier approach of Zervos [7], [8] in
which only v is fixed but not the complexity of the equalizer.

where zp is the channel input symbol, supplied at some
symbol rate 1/T, p(t) is the channel pulse response (the
convolution of the transmit filter, ¢(t), and the channel im-
pulse response h(t), p(t) = ¢(t) *h(t)), and n(t) is additive
white Gaussian noise (AWGN) with power spectral density
No/2 per real dimension. The channel input symbols may
not be M-ary symbols in the case of multicarrier modulation
or coded single-carrier modulation, and in our development
are only characterized as being independent identically dis-
tributed discrete-time samples with zero mean and symbol
energy E{|zi|?} = £,. The channel output signal §(t) is
convolved with a matched filter p*(—t) {where a superscript
of * denotes conjugate), sampled at rate 1/T, and then fil-
tered by a linear equalizer. It is well-known [3] that matched-
filter output is information lossless, and further ([9], Chapter
4) that when the equalizer is invertible that its output is
also information lossless with respect to the channel input.
This means that a maximum-likelihood detector applied to
the signal at the output of the equalizer w; in Figure 1 is
equivalent in performance to the overall maximum-likelihood
detector for the channel. We shall choose minimum mean-
square error between the equalizer output and the desired
channel shaping as a good measure of equalizer performance.

The error sequence can be written as e = by *z,—wi*y;
where * denotes convolution. The signal is defined as the
sequence by, * z, which has signal energy &, = ||5|26,. The
D-Transform of a sequence z; will be defined (see [5] for a

more detailed development) by z(D) B Sy ze DX, We often
use the notation z*(D~*) = Y, z* . D~* to represent the
time-reversed conjugate of the sequence. We can thus write

e(D) = {(D)z(D) - w(D)y(D) . ()

We minimize the mean-square error as o2 =
miny, |1, E [lex|?] where E denotes statistical expectation.
A trivial solution is w(D) = b(D) = 0 with ¢2 = 0. To avoid
this trivial solution, we constrain the signal power to be pos-
itive so that &£ > 0 or, equivalently, |[]> = constant > 0.
A related quantity is the channel signal-to-noise ratio

&

o2
a’t

SNRygs = 3)

When |52 > 0, we will later see that SNRygg is independent
of ||6]|>. Maximizing SNRygs is then equivalent to minimizing
o2. While our problem formulation is the same as the for-
mulation of decision feedback equalization (see [5]), we differ
here in that we do not restrict b(D) to be causal or monic.
An autocorrelation sequence for any sequence zj is

defined by re;x 2 E[zmz_,] with D-transform R..(D).
The power spectral density of the sequence is R,,(f) =
R2z(D) |p=,-ss and the energy of the sequence is & =
Tezo = %f:, R;.(6)d8. The cross-correlation se-
quence between two sequences z; and y; is then r;y; =
E[z;y,‘_k] with D-transform R (D). It will be conve-

nient to write? R;»(D) = E [z(D)z"(D™*)] and Ryy(D) =

&>

2 Actually, we are implying a limiting normalized sum for each coef-
ficient in the resultant polynomial of the form limp _, o Tlr+f Z:——L‘
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E [z(D)y*(D~*)]. As discussed in [5], any autocorrelation se-
quence that satisfies [7_In|R,,(6)|df < oo is canonically fac-
torizable as R,,(D) = £,2(D)z*(D~*) where z(D) is monic
(20 = 1), causal (2 = 0V k < 0), and minimum phase (all
poles and zeros of the polynomial are outside the unit circle).
The error sequence has autocorrelation transform R..(D) and
Tee,0 i equal to the mean-square error.

A well-known principle in MMSE estimation is that the
error sequence values e; should be orthogonal to the in-
puts of estimation, some of which are the samples y;. Thus
Elery;] = 0V k,1, which is compactly written

Ry(D) = E|[e(D)y"(D™)] =0 @

= b(D)R:y(D) — w(D)Ryy(D) .  (8)
then, D)
w(D) = by ze(D)

(D) = HD) 255 ®)

We rilrot,e that y(D) = Rpp(D)z(D) + n(D), where R,,(D) =
2% f_x Sa P (9—’72,—’3) {2d6. Then R.y(D) = &;R,p(D) and
Ryy(D) = Rpp(D) (EzRpp(D) + Np). We define the channel

autocorrelation as Ry(D) 2 ExRyp(D) + Ny, which always
has canonical factorization (when Ny > 0),

Ro(D) = &0g(D)g™ (D7) - ™

This factorization is called the “key equation” in [5].
We compute and simplify the error autocorrelation se-
quence as

Q0
~

_ (&) HDW (D)
RaD)= (Z) Mo Bmpy -

Defining the (squared) norm of a sequence as ||z||?

.o lZk|?, the mean square error from (8) is o2

i ne

(%t) No||%||2. From the Cauchy-Schwarz lemma, we know
18117 = }i$ - 9l* < lI2i?llgl®. Thus the MMSE is

& Jili®
2 - (2} Norms 9
o (s) ol ®)

which can be achieved by a multitude of &(D), only one of
which is causal and monic.

The MMSE solution to our equalization problem is then
achieved by any b(D) that satisfies

w0yt (0-*) = W5 D)5 (D-1)

el 1o
From (6), one finds w(D) from b(D) as
w(D) £s D) (11)

= & ¢(D)g* (D)

which is always invertible when Ny > 0. The channel signal-
to-noise ratio is

&
SNRyes = F‘;ngu’ : (12)

independent of b(D) as promised earlier.

Note again that any invertible choice of w(D) would still
lead to an output for which ML detection is equivalent to §(t).
Forney ([3]) chose a filter that was equivalent to the limit as
No — 0 of the causal choice of w(D) in (11), while Unger-
boeck ([10]) in his study of generalized ML receivers chose
w(D) = 1. Both of these choices lead to ML receivers that
are also optimum, but neither choice also minimizes mean-
square-error. We shall see that a choice that also minimizes
mean-square error can lead to much lower complexity of im-
plementation for a given level of performance.

As mentioned earlier, there are many choices for b(D). The
Minimum-Mean-Square Error Decision Feedback Equalizer
(MMSE-DFE), see for instance [5], chooses b(D) = g(D) so
that (D) is monic and causal. The Auto Regressive Mov-
ing Average (ARMA) Equalizer corresponds to the choice
D)= %ﬂ-g‘(D"). In this case, (D) is noncausal and max-
imum phase (all roots inside the unit circle). We call this
structure an ARMA equalizer because w(D) = 1/g(D) is
monic, causal and minimum phase and because we can write
y(D) = -:7((%)5::(D) + %, often called an ARMA model in
the field of digital signal processing.

Both the MMSE-DFE and the ARMA equalizer have the
same performance (when ML detection is used). Essentially
the causality /noncausality conditions of the feedforward fil-
ters and feedback filters have been interchanged. A multicar-
rier modulation method used with w(D) equalization would
perform the same for either choice of w(D) (or any other
optimum choice).

Thus, it would appear that since all structures are equiv-
alent, we might as well continue with the use of the MMSE-
DFE, since it is a well-known receiver structure. However,
when finite-length filters are used, this can be a poor choice
in attempting to maximize performance for a given com-
plexity of implementation. As a trivial example, consider a
channel that is maximum phase, the feedforward filter for a
MMSE-DFE, in combination with the matched filter, will try
to convert the channel to minimum-phase ([11]) at the out-
put of w(D), leading to a long feedforward section when (as
in practice) the matched-filter and feedforward filter are im-
plemented in combination in a fractionally spaced equalizer
([12]). On the other hand, the ARMA equalizer feedforward
section (combined with matched filter) is essentially (modulo
an anti-alias filter before sampling) one nonzero tap that ad-
justs gain. The opposite would be true for a minimum-phase
channel.

In data transmission, especially on cables or over wireless
transmission paths, the channel characteristic is almost guar-
anteed to be of mixed-phase if any reflections (multipath,
bridge-taps, gauge-changes, slight imbalance of terminating
impedances) exist. It is then natural (and correct) to infer
that the best input-aided equalization problem is one that
chooses b(D) and w(D) to be both mixed-phase also. The
problem then becomes for a finite-length feedforward section
(w(D)) of M + 1 taps and a finite-length channel model of
v + 1 taps (8(D)), to find the best b(D) and w(D) for an
ML detector designed for (D), the signal constellation, and
additive white Gaussian noise (even if the noise is not quite
Gaussian or white). This is the problem addressed in Sec-
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tion 3 and the solution is often neither decision feedback nor
ARMA filtering.

3 Finite-Length Filters

Having established the possibility that certain mixed- (or
maximum-) phase filterings are best for finite-length w(D)
and b(D) under the assumed signal-to-noise measure of per-
formance, we proceed in this section to derive the settings for
w(D) and b(D). In so doing, we will absorb matched filtering
in a finite-length fractionally spaced feedforward equalizer, as
it would most likely be implemented in practice (even if the
feedforward filter is approximated through symbol-spacing).

With fractionally spaced equalizer sampling at time in-
stants t = kT — %,i =0,...,1 -1, equation (1) becomes

B, =D 2mpy_, +m (13)

where §T = [§(kT) §(kT - %) ... (kT - 51T)], ol =
[p(kT) p(kT = T) ... p(kT - 1FLT7],
and nf = [n(kT) n(kT — %) oo (kT - "TlT)] We also
assume that p(t) extends only over a finite time interval
0 <t < LT, and thus p, = 0for k < 0,k > L. Then,
for M successive {-tuples of samples of §(?),

¥ = Pxx + ny, (14)
where
gk T g
_ Y Tk-1 LTI
Ye = : y Xgp = : y N = . )
Ay Tr-M-L By M
(15)
and
g, P - P 0 0
0 p, p P 0
P= - ot (16)
0 ... 0 P, P, - B

We assume that the length of w(D) is (M + 1)I, w
[wy w; wy...wyl, and the length of 4(D) is v+ 1, b
[bo b1 82 ...by]. The error is

er = bxi_a — W¥i,

(17)
where A is an integer corresponding to delay (positive) or ad-
vance (negative), and x}_, = [Zk-a Tx-a-1 ... Ti-a-y].

Having decided on the values for M and v, we proceed to
the following v + 1 cases: setting b; = 1 for each i in turn,
0 < ¢ < v. For each case, equation (17) now becomes

€ = Tp_A_i — VU, (18)
where
Vi
= = b;],
u; [x(k_A)“ ], v = [w b;] (19)

xa-—A)li = [Zk-a .- Troa-i4) Th—a—io1 ... Thoaos],
and b,’ = [_bO---"'bi—l —b,‘+1 _by]

'To minimize MSE, we set Efe;u}] = 0, which leads to the
following solution:

v= R’k—A—iuRl_l{l’ (20)

and

ohsei = Elexei] = & — vRu.; (21)

a—i

In each case, A is varied to minimize MSE. Note that the
case bp = 1 corresponds to the familiar DFE solution.

After executing the above algorithm for all v cases, the
solution corresponding to the smallest 03, ¢ ; is the optimum
equalizer setting.

For multicarrier systems, the effect of finite FFT size, as
well as the effect of cyclic prefix [6] (signal has cyclic prefix
while noise does not) contributes to the overall achievable
data rate. Although using the MMSE solution provides near
optimal performance, other solutions using the above algo-
rithms should also be checked and compared. Table 1 sum-
marizes the algorithm for determining the best equalizer for
multicarrier systems.

Step 1[I Fix desired values for M and v.

Step 2 || Set i=0.

Step 3 |[ Calculate the MSE and the taps setting according to
equation (18) to (21), with various values for A.

Step 4 || Pick 2 to 3 diflerent A's from step 3 corresponding to
the smallest MSE and save those equalizer settings.

Step 5 || Increment 1 by 1; repeat step 3 and 4 until ] exceeds v.

Step 6 || Check the achievable data rate with each equalizer
setting, and pick the one with the highest throughput.

Table 1: Algorithm for finding the best finite-length equalizer
for multicarrier systems

4 Application to Multicarrier Sys-
tems

To demonstrate the significance of our new approach, we use
the channel response of a 9-kft, 26-gauge copper wire inside
the carrier serving area (CSA) loops that was studied exten-
sively in [6]. The structure of the multicarrier system that
we consider is also described in detail in [6]. We fix the sam-
pling rate of our multicarrier system at 640 kHz, with a block
length of 512. We assume the noise impairments are inter-
symbol interference (ISI) and additive white Gaussian noise
(AWGN) with a power spectral density of -110 mW/Hz and
an average input power of 10 mW. The bit error rate is set
at 107 and a noise margin of 6 dB is assumed throughout
this section. No coding is used. Computer simulation is used
to generate the achievable throughput.

We pick several different values for the length of the feed-
forward equalizer M + 1, and the length of the cyclic prefix,
v. The shorter the equalizer length, the less computational
power required and thus the lower the cost. The shorter
the cyclic prefix, the less significant the data loss caused by
the extra samples transmitted. The results for M = 11 and

333.74

0951



v =T based on the algorithm outlined in Table 1 are shown
in Table 2. Each column in the table lists the MMSE for
the optimal A, and the data rate for the multicarrier sys-
tem using the taps setting derived from the algorithm. The
achievable data rates for the multicarrier system do include
the penalty caused by cyclic prefix.

1 0 1 2 3

o4 with Optimal A (x10~5) || 4.37 | 299 | 2.78 | 2.62
- 10 3 3 7

Data Rate (in Mbps) 1.791 | 1.768 | 1.776 | 1.741
1 4 5 6 v

o3 se with Optimal A (x10~°) || 219 | 237 | 2.49 | 2.92
7-) 7 5 3 3

Data Rate (in Mbps) 1799 {1784 | 1.796 | 1.798

Table 2: Achievable data rate for multicarrier systems with
M=11v="7

The achievable data rates among various values of i do not
exhibit significant differences. This phenomenon manifests
the good tolerence of the variations of the feedforward equal-
izer for the multicarrier system, and also raises the need for
checking performance with other equalizer settings in addi-
tion to the optimal solution. Table 3 shows similar results
for different values of M and v.

T [} T 2 3 v
o4rsg With 1077 | 763 | 6.57 | 1068 | 15.99
Optimal A (x10~%)
Y 5 4 3 7 ]
Data Rate {in Mbpsj || 1.813 | 1815 | 1.812 | 1.713 | 1.660

Table 3: Achievable data rate for multicarrier systems with
M=3v=4

The most important advantage of our new approach com-
pared to [6] is the ability to reduce the number of feedfor-
ward taps and the number of cyclic prefixes with virtually no
performance degradation, as evident from Table 2 and Ta-
ble 3. The achievable data rate actually improves when we
reduce the length of the equalizer by 8 and the cyclic prefix
by 3. This translates to over 5 million instructions per second
(MIPS) of savings in terms of computational power. Thus a
multicarrier receiver can be designed that requires less than
15 MIPS.

To illustrate the high performance/cost ratio of our new
approach, we consider the extreme case in which no feedfor-
ward equalizer is used in the multicarrier system. Table 4
summarizes the achievable data rate for different values of v.
With the optimal size cyclic prefix, the throughput decreases
by about 6.2% and the receiver complexity decreases from
14.8 MIPS to 12.2 MIPS . While the above rate loss may not
be significant because of the relatively large block length of
512, other systems that have stringent end-to-end delay re-
quirement may restrict the maximum block length to 128, in
which case the resulting performance degradation would be
unacceptable.

5 Conclusions

In this paper we develop a theory that shows the equiva-
lence and the optimality of a class of equalizers for ideal (in-

v [ 13 15 75 31
ata Rate (in ps . .

Table 4: Achievable data rate for multicarrier systems with
no feedforward equalizer

finite complexity) maximum likelihood receivers. We also
include an algorithm for searching the best equalizer when
finite length constraints are imposed. We find that the com-
plexity for the multicarrier receiver can be significantly re-
duced while maintaining near optimal performance. This is
particularly crucial if small block length has to be used for
some applications.
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