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Abstract-In  discrete multitone (DMT) transceivers an intelli- 
gent guard  time sequence, called a cyclic prefix (CP)? is inserted 
between symbols to ensure that samples from one symbol  do 
not interfere with the samples of another symbol. The length 
of the CP is determined by the length of the impulse response 
of the effective physical  channel. Using a long CP reduces the 
throughput  of the transceiver. To avoid using a long CP, a short 
time-domain finite  impulse response (FIR) filter is used to shorten 
the effective channels  impulse response. 

This paper  explores  various methods of determining the CO- 
efficients for this  time-domain filter. An optimal shortening and 
a least-squares (LS) approach  are developed for shortening the 
channel’s impulse response. To provide a computationally ef- 
ficient  algorithm  a  variation of the LS approach is explored. 
In full-duplex transceivers  the length of the effective echo path 
impacts the  computational requirements of the transceiver. A new 
paradigm  of joint shortening is introduced and three methods  are 
developed to jointly shorten the channel and the echo impulse 
responses in  order to reduce the length of the CP and reduce 
computational  requirements for the echo canceller. 

I. INTRODUCTION 
N discrete multitone (DMT)  transceivers  each  symbol is 
comprised of samples to  be transmitted to  the remote 

receiver  plus a cyclic  prefix (CP) of  length v [l]. The CP 
is simply the last 11 samples of the  original N samples  to 
be  transmitted.  The CP length is determined  by  the  length of 
the  channel’s impulse response, and  is  chosen  to minimize 
intersymbol  interference (ISI). At  the  receiver  the CP  is 
discarded,  the  remaining N samples  are  thcn  processed by 
the receiver.  If the impulse response of the  channel is of 
length v + 1 or  shorter then a CP of length v is sufficient 
to eliminate ISI. Since  the efficiency o f  the  transcciver  is 
reduced by a factor of N/N + v it  is either  desirable  to 
make v as small  as  possible  or  utilize a large N .  Increasing 
,V increases  the  computational  complexity,  system  delay,  and 
memory  requirements of the  transceiver.  Additionally, the 
length of the  channel’s  impulse  response is typically not  under 
the  control of  the designer and varies  from  channel to channel, 
leaving  the  designer to choose  both a large ZJ and large N 
in  order  to  achieve  reasonable efficiency. To alleviate  these 
problems a short  time-domain FIR filter, referred  to  here  as a 
shortened  impulse  response filter (SIRF), is  typically  placed in 
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the  receiver  immediately  following  the  analog-to-digital (AD) 
converter.  The  purpose of this filter is to  shorten  the  impulse 
response of  the effective  channel. The effective  channel is  the 
convolution of transmit filters, physical  channel,  receive  filters, 
and  the  SIRF.  The  impulse  response of the  effective  channel 
needs  to be shorter than the  length of the  CP.  The  length of 
the SIW and  CP are  usually fixcd a priori  and not changed 
from  channel to channel. 

This  paper  addresses  the  calculation of the  coefficients for 
the  SIRF.  It was shown  in [2] that  the  greatest  throughput, 
for a given computational  complexity, of  a DMT transceiver 
can  be  accomplished  using an equalizer  that  shortens  the 
impulse  response of the  channel and a CP.  This  approach 
was  demonstrated  for a DMT based  high-speed  digital sub- 
scriber  line (HDSL) transceiver in [l]. In [3], an efficient 
mcans  for  determining  the coefficients  of the SIRF was  de- 
veloped. However, the  algorithms in [3] are  hampered by 
stability  and  convergence  problems, and [2] fails to present 
an efficient  algnrithrn. This  paper  develops computation all^^ 
efficient algorithms that can  achieve  impulse  response  short- 
ening  unhindered by  stability problems  and  are  realizable in 
real-time  using off-the-shelf digital  signal  processing  (DSP) 
hardware. 

When  the  transceiver  is  used in a full-duplex  environment 
the  portion of the  receive  signal  arising from  echo  must  be 
reduced through the  use of echo  cancellation  beyond  the  loss 
provided by  the hybrid.  Echo  canceller  structures  for DMT 
have  been discussed  previously [5]-[10], but the  important 
point  to note is that the  complexity is directly  related  to  the 
length of the  echo path impulse  response 161, [9]. If the  length 
of the SIRF is chosen  appropriately,  the  echo path impulse 
response  can  be  explicitly  shortened  without  reducing  the 
effectiveness of the  channel  shortening. 

The  algorithms  presented  in this paper  approach  the  problem 
of equalization  from  the  perspective of impulse  response 
shortening. It may be possible that this shortening  mcasure 
is not  the  best  measure of equalization  since  ultimately  the 
channel  SNR  in  each  subsymbol of the  multitone  system 
is  what is important.  However,  in  practicc  and  theory  this 
approach provides adequate  performance  for  most  applications 
as  wc will demonstrate in Section IV. 

There  are  other  issues  such as tracking  slow  channel  varia- 
tions,  misadjustment  resulting  Irom finite training  time,  quan- 
tization effects, etc.  which affect the  real  world  application 
of these  algorithms. We do not  address  these  issues  here but 
instead  create a theoretical  benchmark  for  optimal  shortening 
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Receiver 
Fig. 1. Simplified DMT transceiver. 

and  introduce a new  paradigm and method for  joint channel 
and echo path shortening. 

Section 11-A develops  the  motivation for channel  impulse  re- 
sponse  shortening for  DMT transceivers.  Section 11-B develops 
a  new  algorithm  based on optimal  shortening of an  impulse 
response. Given the original  impulse  response, an SIRF length, 
and  a CP length  the  optimal  algorithm  finds the coefficients 
which  generate the shortest  impulse  response. Section 11-C 
uses  a  more  traditional least-squares ( L S )  approach to fit  a 
pole-zero model to  the impulse response. By choosing  an 
appropriate  numbers  of poles  and an appropriate  numbers of 
zeros,  the  resulting  poles can be used as the SIRF coefficients 
to  shorten  the  effective  impulse  response Section 11-D restates 
ideas  from [4] and 1121 as a  more  efficient  means  of realizing 
the  algorithm  developed in Section 11-C. Section 11-E presents 
some observations  on  applying the algorithms presented in 
Sections 11-B, 11-C, and 11-D. Section I11 presents  a  new con- 
cept  where both the  channel and  echo impulse  responses are 
simultaneously  shortened. The algorithms  presented in  Section 
11 are  expanded and reformulated for this new “joint  shorten- 
ing”  model.  Both  an  optimal and a  computationally  efficient 
algorithm  are  derived  that achieve significant echo  impulse 
response  shortening  while  maintaining channel  shortening 
performance.  Finally, some simulation  results are reported in 
Section IV, and conclusions are drawn in  Section V. 

11. CHANNEL  SHORTENING 

A. Background 

A simplified DMT transceiver  (without echo  cancellation)  is 
shown in Fig. 1. The  encoder maps  incoming bits onto N / 2 +  1 
carrier  frequencies forming  the complex frequency  domain 
subsymbols X ( k )  where k = 0,1, ’ .  . , N/2 .  The .W/2 + 1 
subsymbols  taken  togethcr form a  frequency domain symbol. 
A conjug,ate  symmetry  condition is then imposed  creating 
a  length N frequency  domain  signal. This  signal  is  inverse 
Fourier  transformed to generate  a real,  length N time  domain 
symbol, x(.), which is prefixed  with  a CP of length 7) and 
transmitted to the  far end  receiver. The CP consists of the 
last u samples of ~ ( n ) .  At  the  receiver,  the  receive signal  is 
passed  through a short time-domain  FIR filter, and then the 
CP is removed. This signal, y(n) is then  Fourier transformed 
back to the  frequency domain. Each  of the frequency domain 
subsymbols Y ( k )  can  then  be  decoded to  an  outgoing bit 
stream. 

In  Fig. 1, the physical channel  is  considered to  be  the 
combination of the  actual cable  and any filtering done  in 
the  transmit  or  receive  analog  circuitry.  Denoting the  impulse 
response  of  the  physical channel by h(n)  the  output  of the 
SIRF can be  expressed as 

y(n) = (h(7z) f w(72)) f .(n) = h,f€(n) * .(n) (1) 

where w(.) is the  impulse response of the SIRF and * 
denotes the convolution operator. It can  be  shown that  if 
X(.) is transmitted  with  a CP of length v and  the  effective 
channel, h , ~ ( n ) ,  is at most  of length v + 1, each y(n)  in 
the current symbol  will only depend  upon z(n)’s  currently 
being  transmitted.  If  the effective  channel  is not constrained 
to a  length  of v + 1, then y(n) will depend  upon  the  ourrent 
symbol’s  time  samples ~ ( n )  as  well as the  previous  symbol’s 
time samples I C ~ ( , ~ L ) .  The  previous  transmit  symbol x,(n) will 
then  contribute IS1 which presents itself as noise to the  slicer 
and SO decreases  the  performance  of the transceiver. 

Regardless of the choice of w(n)  it is generally not possible 
to shorten  the  impulse response  perfectly.  Some  energy will 
lie outside the largest v + 1 consecutive  samples of h, ,~(n) .  
As a measure of the IS1 we  can  measure  the  shortening 
SNR  (SSNR)  which is the ratio of the  energy  in  the  largest 
consecutive u + 1 samples to the  energy  in  the  renlaining 
samples. The largest I /  f 1 samples  will not  necessarilly start 
with  the first sample.  This delay. d,  is normally compensated 
for  at the  receiver  by  delaying the start of the  receive  symbol. 
Since h(n)  is not under  the  control of the designer, ‘we use 
the coefficients of the SIRF, w (n) ! to limit the length of the 
effective channel’s impulse response,  thereby  minimizing ISI. 
The  shape of  the  resulting impulse  response of the effective 
channel, h,tf(n), is usually unimportant, what is  important  is 
that  the  SSNR  be  maximized. 

A necessary  step in any algorithm  is  estimating  the  channel 
and  echo impulse  responses.  Typically, DMT  transceivers 
use known  training sequences  for  purposes of adapting  var- 
ious parameters  associated with  the  transmitter  and  receiver. 
Since DMT  transceivers have  the  frequency  response  naturally 
available, the training sequences  can  be  used to calculate 
the frequency  responses  of the  channel  and  echo  path.  The 
frequency  responses  can  then be  inverse  transformed  into the 
timc domain,  generating  the  time-domain impulse  responses. 
Care should be taken to reduce the  variance of the  noise in the 
estimate, as well  as compensate  for  any  other known effects 
such  as  aliasing. 
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Our goal in this paper is to develop algorithms for  impulse 
response shortening  that  result  in  sufficient shortening  while 
being realizable  in  off-the-shelf DSP chips. 

hwall = 

B.  Optimal Shortening 
In this section,  we  develop  a  new  algorithm for  thc  optimal 

shortening of  an  impulse  responsc. The algorithm utilizes 
eigenvalues and eigenvectors to generate  the coefficients of an 
optimal shortening filter, given  the  original impulse  response, 
the CP length and  the SIRF length. 

We can rewrite (I) using such  matrixes as (2j shown on 
the  bottom of this page,  and  where hf is the  length of the 
physical channel's  impulse  response  and t is the length of the 
SIRF. We wish  to force as much of the  effective  channel's 

- - 

impulse response to lie in v + 1 consecutive samples  and as 
a consequence  minimize ISI. Let h,i, represent  a window of 
v + 1 consecutive  samples of h,ff starting  with sample d ,  and 
let wall hwall represent the remaining M + t - v - 2 samples 
of h , ~ .  With these definitions 

h ( d )  h(d-  I) ' . '  h(d ~ t + 1) 
h(d + 1) h jd )  " '  hjd - t + 2) =I ! h(d + 2);)  h(d t v -- I) . . ' h(d + v : I  - t + 1) 

1 "'" J -Wuallw. (4) 

w( t  - 1) 

Optimal  shortening can he expressed as  choosing w to mini- 
mize h:allhrwsll while satisfying  the constraint: h:inhwin = 1. 
Constraining the energy  in  the window  ensures  that the  trivial 
solution, w = [O . . 4 O I T ,  is disallowed. The value of one  is 
picked  arbitrarily  since w can be scaled  arbitrarily without 
changing  the  energy  ratio.  The expressions  for the  energy 
outside and inside  the  window can he written  as 

h:allhwali : w ~ H : ~ ~ ~ H ~ ~ ~ ~ u )  = wTAw ( 5 )  
hwinhwin = w1 H : i n H w ; n ~  = wTBw (61 T / /  

where A and B are  symmetric and  positive semidefinite 
matrixes.  Optimal  shortening can be considered as choosing w 
to minimize w Aw while  satisfying a constraint of w Bw = 
1. 

The following  developrncnt assumes  that B is invertible. 
The  case  where B is singular  is  more complex and is handled 
in  the Appendix. Typical DMT transceivers use a SIRF length 
which  is  shorter  than  the  length of the CP (i.e. t < 11). The  rows 
of H,,, consist of shifted windows of the channel impulse 

T T 

h(0) 0 . . .  

n . . .  0 h ( M -  1) 1 
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Model Shortening 

physical channel 

Fig. 2.  LS approach to impulse shortening. 

response  and  it  has  been  found  in practical applications (e.g. 
twisted-pair  copper cables)  that the  rank (Hwin) = t. As 
a consequence,  the matrix B of dimension t x t will be 
positive definite and  can be decomposed  using  Cholesky 
Decomposition  into 

where A irs a diagonal matrix formed  from  the  eigenvalues of 
B ,  and  the  columns of Q are the  orthonormal  eigenvectors. 
Note  that,  since B is of full rank, the matrix (a)-' exists. 

In order  to satisfy the constraint on w Bw define T 

y = V F ' W  (8) 

so that 

yTg = wTJBJBTw = wTBw = 1. (9) 

w = (JBT)-'y (10) 

Solving  in (8) for w 

we find that 

v r T ~ w  = yT(fi)-l~(JBT)-ly = y T ~ y  (11) 

where C is appropriately  defined. Optimal  shortening  can 
thus be considered as choosing y to  minimize yTCy while 
constraining yTy = 1. The solution to  this  problem  occurs 
for y = lmin where &,,in is  the unit-length eigenvector 
corresponding  to  the minimum eigenvalue Amin of C. The 
resulting SIRF coefficients  are  thus 

w,pt = (aT)-lLi*. (1 2) 

Substituting (7) into  (1 1) we  find 

c = (Q&)-~A(&Q~)-~. (13) 

The shortening  SNR  can  be  expressed  as 

In  summary,  the  optimal  algorithm  uses a composite  matrix, 
G, whose  elements  are  calculated  using  the  wall  and  window 
impulse  response  matrixes, Hwall and Hwin. The  optimal 
SSNR is directly  related to the  minimum  eigenvalue  of  this 
composite  matrix  and  the  optimal SIRF coefficients  are a 
linearly  transformed  version of the  unit-length  eigenvector 
associated  with  the  minimum  eigenvalue. 

While  this  algorithm  provides  the  shortest  possible  effec- 
tive  channel, it requires  the  computation of eigenvalues  and 
eigenvectors  which  can  be difficult to implement in real- 
time  off-the-shelf DSP chips. It is  more  desirable to have 
an algorithm  which  approaches  the  shortening of the  optimal 
algorithm  while  providing a more  computationally (efficient 
algorithm. 

C. LS Shortening 
Fig. 2 shows  the LS approach to impulse  response  :-h  orten- 

ing  by  modeling  the  impulse  response of the  channel  with a 
pole-zero  model.  Assume  that  the  original  impulse  response 
of the  channel  is  represented  as a transfer  function h(z- ' )  = 
a ( z - l ) / l +  b (2 - l ) .  The LS approach  finds  the  best  pole-zero 
model  with  transfer  function &(z-')/l + b(z-').  If the  poles 
of the  model, 1 + i(z-')? are used  fnr  the coefficients of the 
SIRF, then  the  effective  channel will have a transfer  function 
of 

The  SIRF cancels  the  poles of the  physical  channel,  leaving  the 
zeros of the  model [ 11. If the  number of zeros  in  the  model  is 
chosen to be v + 1 then  the  resulting  effective  channel  impulse 
response  will be approximately of length z/+ 1. Throughout  the 
remainder  of  this  paper it is assumed  that s(n) is  zero-mean 
and white, and that  the  channel is stationary  and  causal. 

Define a parameter  vector  as 

0 = [ i i0 &' . . . &, - & -i2 .. . -&+IT (16) 

and a regressor  vector  as 
SSNRLOpt = 10 log ( ) = 10 log ( L, w&f,,Bw,pt 

w,T,,Awopt Amin @(n) = [.(n) s(n - 1) . . . s(n - ?I) y(7, .- I )  
= -1Ulog(A,i,). (14) y(n - 2 )  . . * y ( n  - t)]? (17) 
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Using (16) and (17)  we can express  the  estimate of y(n.) as 

Y(n,) = O%(n) (18) 

e(.) = y(n) - Y(.). (19) 

and  the error  as 

We desire  to  minimize  the  squared-error.  From  the  well  known 
LS results  and  assuming  that ~ ( n )  is sufficicntly exciting we 
know  that  the  parameter  vector  which  minimizes  the  squared- 
error is 

O L S  = R-lr (20) 

where 

R = E{Pr(n)PrT(n)} (21) 

7- = E{d.)@(n)t. (22) 

In  this  paper  we  use  the  operator E{ } as a generalized  aver- 
aging  function. If x (n )  is viewed as a deterministic  signal then 
E { z ( n ) }  is  interpreted as the  time  average l / n  E::,' ~ ( k ) .  
If x(.) is interpreted as a stationary  stochastic process  then 
E { z ( n ) }  is interpreted  as  the  usual  ensemble  average.  In  the 
latter  case  the  concept of least  squared  error  is  replaced  by  the 
concept of minimum  mean  squared  error.  The  reader  may  pick 
which  ever  intcrpretation  makes  her  feel  more  comfortable. 

In typical LS applications, actual time  domain samples  of 
x(.) and y(,rz) are directly  fed into the LS estimation  process. 
DMT transceivers  naturally work in  the  frequency  domain so 
channel  identification is usually  done  by  generating an estimate 
of the  channel's  frequency  response  which is then inverse 
DFT'd  to directly produce  the  estimated  impulse  response of 
the  channel, h(n) ,  where y(n) = h(n) * z ( n ) .  The LS method 
is then  used to fit a U ( z - ' ) / l  + 6(zP1) pole-zero model to 
the  estimated  impulse  response.  Having  computed  thc  impulse 
response and assuming 

R,,(k) = E{z (n ) z (n  + k ) }  = S,S(k) (23) 

we  can directly  compute  the  components of R 

R, , ( k )   =Ryz ( -k )  = S,h(-k) (24) 

R,,(k) =s, h(i)h(i  - k ) .  (25) 
M l  

i=O 

In the  sequel, for the  joint LS and  twoimultichannel AR 
models,  it is assumed  that  thc  computed  impulse  response(sj 
is  used  rather  than  actual  time  domain  samples of the  signals. 

The  discussion  above  places  the  window or I/ + 1 samples 
at  the  beginning of the  shortened  effective  impulse  response. 
As mentioned  in  Section 11-B, this  is  not  always the optimal 
choice.  Potentially,  modeling  the  impulse  response from the 
beginning  wastcs  some of the v + 1 zeros  available on flal  
delay or small,  insignificant  samples of the  impulse  response. 
To avoid  this  problem,  we  can  adjust  the  location of the L ~ ~ O S  

to  take  advantage of the flat delay of the  channel. 
The LS approach  developed  above  requires  the  calculation 

and  inversion of the  autocorrelation  matrix R. The inversion 
makes  the  algorithm  unsuitable  for real-time system  imple- 
menlalion. We desire a simpler  approach which provides  more 
realistic  computational  algorithms. 

D. Twto-Channel Autoregressive (AR) Modeling 

A computationally  practical  algorithm  for  performing  chan- 
nel only  shortening  appears in [4] and [ 121. A  synopsis of those 
results  is  given  here for  two reasons:  First, in Section IV, we 
will compare  the  results of this algorithm  with  the new optimal 
results  derived  in  Section 11-B for  channel  only  shortening. 
Second,  in  Section 111-C, we  derive a new  practical  algorithm 
for  joint  channel  and  echo  response  shortening  which  utilizes 
many of thc  ideas  from  this  algorithm. 

Our  polc-zero  model of the  channel  results  in a  non-Toeplitz 
autocorrelation  matrix  for which there  are no computationally 
efficient means  to  solve  for  the  model  parameters. If, however, 
the  model  consists  only of poles,  the  matrix  takes on a Toeplitz 
form  for  which  computational efficient solutions  exist.  It  is 
desirable  then to reformulate  the  general  pole-zero  model  into 
an all  pole  model.  This  method  is a generalization of the 
approach of embeddmg  an  auto-regressive  moving  average 
(ARMA) model  into a two-channel AR  model first discusscd 
in [l I].  Embedding was first applied  to  impulse  response 
modeling in I121 for  an equal  number of zeros  and  poles. 
It was  generalized  for a differcnt  number of zeros  and  poles 
in [4] in  the  context of efficiently  realizing  long FIR filters. 
Here, we utilize  the  approach  to  model  the  impulse  response of 
the channel as a pole-zero  model.  The  poles  can  then be used 
as SIRF coefficients  to  cancel  the  poles of the  channel.  The 
model  used is the  same used  above for the LS, what  differs  is 
how  the  parameters  are  computed. 

The same ( t ,  v) pole-zero  model  given  in (18) can  be 
rewritten  as 

& = - 6 l ~ k - l  - ' .  -b t yk - - t  + Z O Z ~  + . . . + (26) 

where we assume  here  that t 2 v. The case  for f < u can  easily 
be developed  and  is  discussed  in [4]. As is  typical  with AR 
modeling,  the  algorithm  computes  the t + v + 1 parameters 
recursively.  In  the j t h  recursion [ 1 5 j 5 t) the (j, j - 6) 
pole-zero  model is generated  from  thc ( j  - I ,  j - S - I) pole- 
zero  model,  where b = t - u > 0. For the j t h  recursion  the 
(j; -6) pole-zero  model  can  be  written as 

A .  

y k  = -bi$/&l - ' ' ' -qyk-3 + a;zr, 

+ ' ' + I%_*Xk-j+O + e;. (27) 

Defining uk [ y k ~ , + 6 ] ~ ,  (27) can  be rewritten  into  the form 
of a two-channel AR model 

r I -  

where 

Multiplying  both  sides of (28) hy and  taking  expectations 
yields 

n(o) + o:R(-I) + s . .  + O ; R ( - ~ )  = ~ 3 f  for i = o 
(30) 
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R(i)  + q R ( i  - 1) + ' * ' + OjR(1: - j )  = 0 

where 

and 

(33) 

Equations (30)-(33) represent  a j th  order  two-channel AR 
model.  This  system of linear  equations can be solved effi- 
ciently  using  the  multichannel  version of the  Levinson  Algo- 
rithm [4], [ 131. After  the j = tth  recursion,  the ( t ,  v) pole-zero 
model coefficients  can be read from Oi( 1 5 i 5 t). 

The  advantage of this  algorithm is that computing the  pole- 
zero  model  only  requires  the  inversion of 2 x 2 matrixes 
and 2 X 2 matrix  operations  for t recursions,  where  the 
LS approach  requires  one  recursion with the  inversion of an 
( t  +. v + 11) x ( t  + v + 1) matrix.  Additionally,  a  normalized 
version of the Levinson  Algorithm can be used  which  bounds 
the  variables  in  ranges  more  suitable  for  fixed-point  arithmetic. 

The above  derivation  places  the  zeros and poles  together at 
the  beginning of the  impulse  response  to be modeled.  It may 
desirable,  especially  when  the  numbers of poles  and  zeros  are 
not equal,  to  offset  one  with  respect  to  the  other. 

E. Observations 

All of the  algorithms  presented  above  require  the  choice of 
a window  location on the  impulse  response  prior  to  calculating 
the SIW coefficients.  This  can be accomplished by trying 
different  window  locations,  computing  the SIRF coefficients, 
calculating  the SSNR, and  choosing  the window location and 
SIRF coefficients  which  yielded  the  best SSNR. This  can be 
very com,putationally  expensive and wasteful. 

Often  the  channel  has an impulse  response  which is very 
short  prior  to  the  peak  (precursor)  and very long  after  the 
peak  (post-cursor). As such,  the  impulse  response  can  often 
be  considered as a  few zeros  creating  the  pre-cursor  response, 
vpre, and  poles  and  zeros, t and  vpost,  respectively,  creating 
the  post-cursor  response.  Taking  advantage of this  fact can 
reduce thc: computational  complexity of coefficient  calculation. 
For  example,  onc  could  only  model  the  post-cursor  portion of 
the  impulse  response  using  fewer  zeros,  vpost < v, and the 
full  number of poles.  When  the  original  impulse  response is 
convolved  with  the SIRF the  length of the  effective  channel 
is approximately  the  number of unmodeled  zeros in the  pre- 
cursor, upre, plus  the  number of zeros  in  the  model, vpost, 
where I+,., and vpost have  been  chosen such that v % upre + 
vpost. Additionally,  since  the Complexity of the  coefficient 
calculation  is  dependent  upon  the  number of zeros  and  poles in 
the  model,  reducing  the number of zeros  in  the model during 
coefficient  computation in conjunction  with  intelligent window 
placement  can  yield  solutions  with  lower  complexity.  There 
are  other  such ad hoc approaches  which  can be used to  further 
reduce  the  amount of computations  required  to  calculate  the 
SIRF coefficients. 
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Another  issue  to be considered is model  order  selection. 
The  resulting SSNR is affected if the  number of poles  and 
zeros  is  chosen  poorly.  Since  simply  increasing  the  number 
of poles  and  zeros can decrease  the SSNR careful  selection 
[4] is important. We will not discuss  model  order  selection in 
this  paper. The reader is referred  elsewhere  for  information  on 
selection of model  order [14]. 

HI. JOINT CHANNEL AND ECHO SHORTENING 

So far we have only  discussed  the  shortening of a  single 
impulse  response.  When a DMT transceiver is used for  bidi- 
rectional  communication  over a single  cable  there  are  two 
signal  paths  to  consider:  channel  and  echo. The  channel  is 
associated  with communication between  two  remote  transceiv- 
ers  and  carries  the  actual  data  from  one  end  to  the  other 
end. An echo path  also  exists  between  a  local  transmitter 
and receiver  due  to  an impedance mismatch in the  hybrid 
circuit.  The  receive  signal is the  combination of the  far-end 
signal  through  the  physical  channel and  the  near-end  signal 
through  the echo path.  The  motivation for  impulse  response 
shortening  provided in Section 11-A related  to  the  channel  path. 
Impulse  response  shortening of the  echo path is  desirable  to 
reduce  computational  complexity  in  the  echo  canceller. As 
the length of the impulse  response of the  echo  path  increases 
the  computational  complexity of the  echo  canceller  increases 
[5 ] ,  [9]. The reader is referred to [5]-[lo] for  discussions of 
echo  canceller  structures  for  DMT  transceivers.  The  important 
concept  for  the  discussion  here  is  that it is  necessary to shorten 
the  impulse  response of the  channel  path,  and  advantageous 
to  shorten  the  impulse  response of the  echo  path t'o reduce 
transceiver  complexity. 

A. Joint Optimal Shortening 

Using  similar  techniques  to  those  used in Section 11-B 
for  the  optimal  shortening  algorithm  a  type of join1 optimal 
algorithm  can be developed. We can  write  the effectivt: channel 
and  echo  impulse  responses as e 

h,tf = H w  and h,rt.,, = Hew (34) 

where H and H e  take  on  forms  similar  to  that  shown in (2). 
Let hwin represent  a window of v + 1 consecutive  samples of 
h , ~  starting at sample d, and let represent  the  remaining 
samples of h , ~ .  Additionally,  let hwin,e represent  a window 
of v, + 1 consecutive  sampks of h , ~ , ,  starting at sample d e ,  
and let hwall,c represent  the  remaining  samples of hen+. These 
definitions  can be  expressed  as 

&vir, H w i n w ,  h a 1 1  = H w a l l w ,  hwin,e = Hwin,cw 
hwal1,e = ffwaIl,21J. (35) 

One way to  formulate  joint  optimal  shortening  is  to  choose 
w to  minimize 

w (Q.Hwallffwnll + (1 - w ; a l l , e H w a l l , e ) M  = W ? ' & b  
T T  

(36) 
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Fig. 3. Pole-Zero-zero model for joint LS. 

such  that 

WT(PH:inHwin + (1 ~ P)H:ln,eHwin;t)w 
W T B ( p ) W  = 1. (37) 

The parameters a and 4 balance  the  energy  relatiorlship 
between  the  energy in and out of the  window  for  both  the 
channel  and  echo. If it is assumed hat B(P) is  a  symmetric 
positive  definite  matrix,  the  solution  presented  in  Section 11-B 
can be used  to  solve  for  the SIRF coefficients. The solution 
lor a singular B is  found in the  Appendix. 

Note  that  in  (37)  the  weighted  sum of the  channel  and  echo 
windowed  energy  is  constrained  to  unity. It is  possible  that 
the  effective  channels  impulse  response  could  have  minimal  or 
even  zero  energy. If this  were  to  happen  it  would be necessary 
to  increase  the  weight  applied  to  the  channcl  impulse  response. 
The  joint  optimal  algorithm  does  not  appear  very  sensitive  to a 
and P when v is big enough [15]. In general,  this  algorithm  has 
been found to  produce  the  best  channel  and  echo  shortening 
of any of the  joint  shortening  algorithms  presented in this 
paper,  and so serves  as  a  benchmark  in  comparing  the  various 
methods. 

B. Joint L.S Shortening 
Fig. 3 shows  the  model  for  the  joint LS approach. The 

joint  least-square  approach  seeks  to fit a  pole-zero-zero  model 
to  the  echo and the  channel impulse responses.  Assume 
that  the  original  impulse of the  channel is represented  as  a 
transfer  function h(z- l )  = u ( z - I ) / l  + b(z-') and  the  echo 
as /L(z - ' )  = c(z-')/l + b(z - l ) .  The  joint LS approach 
finds the best  pole-zero-zero  model  with  transfer  function 
ii(z-'j/l + ;(z-'j for  the channel and t(z-')/l + i(2-l) 
for  the  echo. If the  poles of the  model, 1 + 6(z- ' ) ,  are used 
for  the  coefficients of the SIW, then the  effective  channel 
will  have  a  transfer  function of C ( 2 - l )  and  the  cffective  echo 
will have a  transfer  function of c(z-'j. The  SIRF cancels  the 
poles of both  the  physical  channel  and echo path,  leaving  the 
zeros of the  model.  While  it  is  not  obvious  that  a  single  set 
of poles  can be used  we  will  dernonstratc  in  Section IV that 
for  practical  cases of interest  this  assumption  is  valid. If the 
number of zeros  in  the  model  for  the channel  is chosen to be 
v + 1 then  the  resulting  effective  channel  impulse  response 
will be approximately of length v + 1. The number of zeros 
in  the  model for the  echo  is  chosen  based upon  the desired 
computational  complexity of the  echo  canceller. It is  worth 
noting Ihal one can  not  make  the  echo  response  arbitrarily  short 

with  a  limited  number of poles i n  the  model  without  adversely 
affecting  the  SSNR of the efrcctive  channel  response. 

Throughout  the  remainder of this  paper  it  is  assumed  that 
z ( n )  is  zero-mean, white and  independent of z (n) ,  and  that 
the  echo  is  stationary  and  causal. 

Since  the  channel  response  must  bc  shortened to remove ISI, 
while  echo  shortening is beneficial  to  reduce  echo  canceller 
complexity,  the  number of zeros  used  for  the two responses 
do  not  have  to be equal. Let v, + 1 be the  desired  length of 
the  effective  echo  response. 

Define  a new parameter  vector to be 

0 = [ i i o  ii1 . . .  i iu  -61 -62 

. . . -it to 2' . . . tve]T (38) 

and  a new regressor  vector 

@(n) 
= [.(nj.(n ~ 1) . . z (n  - v)y(n - l )y (n  - a) 
. . ' y(. - t )  z ( n )  z(n - 1) ' ' . z ( n  ~ v,)] T 

= [x' yT ZT]? (39) 

Assuming  that x(??,) and z ( n )  are  sufficiently  exciting,  the 
parameter  vector  which  minimizes  the  squared-error of the 
estimate  is 

QLS = R-'r (40) 

where  the autoconelation matrix  and  cross  correlation  vector 
are  given  in (21) and (22). The elements  or R and T will be 
derived  later  in  the  discussion of the  multichannel AR model. 

The same  extensions  that  were made to  the LS approach 
in  Section 11-C regarding  window  placement  can be read- 
ily  applied  here.  Now,  however,  a  window  can be placed 
independently  for  the  channcl  and  echo  responses. 

C. Multichannel A R  Modeling 

Since  the  joint LS approach  requires  the  inversion of a 
large  matrix,  the  approach is infeasible  for  real-time  system 
implementation. To avoid  these  problems we will  extend  the 
algorithm  described  in  Section 11-D to  the  joint  shortening 
case.  The  approach  here is to embed the  pole-zero-zero  model 
into  a  multichannel AR model. The resulting  algorithm  creates 
a  novel  and  computationally  efficient  algorithm  for  joint 
shortening. 

For  simplicity of derivation,  assume  that  the  number of 
desired  zeros  modeled for both  the  channel  and echo is v 4- 1. 
It is  straight  forward  to  generalize  the  algorithm  to  the more 
generic  case.  As  in  Section 11-D it  is  assumed  that  the  length of 
the SIRF, t ,  is  greater  than or  equal to v. Again,  the  equations 
can  be modified for the  more  generic  case.  The  following 
derivation  also  places  all the poles  and  zeros  starting  at  the 
beginning of the  impulse  responses. The more  generic case 
can be derived in a  similar  fashion  to  that  presented  below by 
modifying (41). 

The  pole-zero-zero  model  described  in (38) and  (39)  can  be 
rewritten  as 

y k  = -6ly&l - ' ' -i)tYk--t + &@k 
+ . . + + &z,, + . . . + & , ~ k - ~ .  (41) 
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The  algorithm  computes  the t + 211 + 2 parameters  recursively. 
In the j t h  recursion (1 5 j 5 t )  of the  algorithm  the 
( j ,  j - 6, j - 6) pole-zero-zero  model  is  generated  from  the 
( j  - 1, j -- S - 1, j - 6 - 1) pole-zero-zero  model,  where 
S = t - L' 2 0. The (j, j - 6, j - 6) pole-zero-zero  model 
can be written  as 

where 

R(-i) = R ' P ( i )  

and 

cf 
L 

Assuming  that 

y(n) = h(n)  * z(n) + hdn)  * z!n) (5 1) 

then 

R,,(k) =S,S(k) (52) 
H z z ( k )  = S,b(k) (53)  

& g ( k )  =&.T(-k) = Sxh(-k) (54) 
Rzy(k) = R y z ( - k )  = S,h,(-t) (55) 

and 
00 rn 

R y y ( k )  = S, h(i)h(i  - IC) + S, he( i )he( i  - k )  (56) 
i=O  i=O 

where S, and S, are  the  power in r(n) and z ( n ) ,  respectively. 
Equations (46)-(50) represent  a j th  order  multichannel 

AR model.  This  system of linear  equations can  be solved 
efficiently  using  the  multichannel  version of the  Levinson  Al- 
gorithm [4], [ 131. After  the j = t recursion,  the ( t ,  v, u )  pole- 
zero-zero  model  coefficients  can  then be read  from @: ( I  < 

As with the  two-channel AR algorithm,  the  advantage of 
this  algorithm  over  the  joint  LS  algorithm is that  computing 
the  pole-zero-zero  model  only  requires  the  inversion of 3 X 

3 matrixes  and 3 x 3 matrix  operations  for  recursion,s,  where 
the  joint LS approach  requires  one  recursion  with  the  inversion 
of an ( 1  + 21) + 2) x (t + 2v + 2) matrix. The same  issues 
regarding window placement  that have been discussejd earlier 
also  apply  to  the  multichannel AR algorithm.  Intelligent  ad- 
hoc  simplifications  can  easily  be  made  to  reduce  computations 
while  maintaining  near  optimum  shortening  performance. 

i 5 t) .  

IV. SIMULATION RESULTS 

To demonstrate  the  capabilities of the various algorithms 
presented  above,  the  configuration  shown  in  Fig. 4 is  used. 
The  physical  cable  used  is 9 ft of 26 gauge unshieldecl twisted 
pair,  and  the  bandwidth  used  is 20-900 kHz.  The  echo  path 
is a transmit path of 20-138 kHz through a hybrid. This 
configuration  is  representative of that  encountered by the 
async.  terminal  unit  remote  terminal (ATU-RT) in th.e asym- 
metrical  digital  subscriber  lines  (ADSL)  environment [ 161. The 
impulse  responses  for  this  configuration  were  provided  for US 
by W.Y. Chen of Bellcore  [17].  For  all of the  simulations 
we used a SIRF length of 16 (t = 16), a CP of length 32 
(v = 32),  and  a  target  effective  echo  response  length of 33 
( I / .  = 3 2 ) .  Full search  algorithms  have also been  utilized  to 
optimize the location of the  modeling  windows  for  both  the 
channel  and  echo  responses.  No ad hoc window  placement 
algorithms  have  been  used to ensure fair  comparison of the 
algorithms. 

Fig. 5 shows  the  original  impulse  response of the  channel 
and  the  effective  shortened  channel if the  channel only optimal 
algorithm  presented in Section 11-B is  used. A SSNR. = 64.1 
dB  was  achieved. The joint  optimal  result  is not shown  since 
it  is  visually  indistinguishable  from  the  channel  only  optimal 
result. Fig. 6 shows  the  original  echo  impulse  response  and  the 
effective  shortened  echo  for  both  the  channel  only  optimal  and 
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Fig. 4. Configuration for simulation examples. 
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Fig. 6 .  Original echo  impulse response  and  cffcctivc  rcsponse  resulting  from channel only optimal  aud joint uplirrlal shorlening. 

the joint optimal  algorithm with n! = p = 0.5. As shown,  both 
have  shortened  the  echo  response,  however, the  joint optimal 
algorithm  which  explicitly  works  to  shorten  the  echo  has done 
a significantly  better job shortening  the  echo. 

Table I shows  the  resulting  channel  and  echo S S N R  values 
for  each of the algorithms. As shown all of the algorithms 
result in nearly  identical  channel  shortening  with  the  optimal 
algorithms  performing  the best. The  joint  optimal algorithm 
gives  up  very  little in channel  shortening and produces  a 
large  advantage in echo response shortening. As expected 
the algorithms which  explicitly  work to shorten  the echo 

TABLE I 
SHORTENING SNR VALUES FOR THE DIFFERENT  ALGORITHMS 

impulse  response  achieve  the  best  echo SSNK. As shown 
in the  table,  the  computationally efficient two-channel AR 
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and multichannel AR algorithms  perform  nearly as well  as 
the  ordinasy or  joint LS approaches. It should be  expected 
that the  two-channel  and  multichannel AR algorithms perform 
similarly lo the  two LS approaches  since  they  use  the  same 
modeling  architectures.  They  differ  for  the  most  part in the 
computational  approach. 

When  the joint shortening  algorithms  are  utilized  they  take 
advantage of freedom  remaining in  the filter coefficients. It 
may  have  been  that  fewer  coefficients  could  have  been  used 
if only chlannel shortening  was  the  goal.  It is necessary  to 
trade-off  the  additional  complexity  in  the SIRF with  decreased 
complexity  in  the  echo  canceller. A joint shortening  algorithm 
allows the user  to  utilize  the SIRF  to its  fullest  potential.  In 
the  event  that a joint shortening  algorithm  does  not  provide 
the  necessary  channel  shortening  it is possible to increase  the 
shortening,  of  the  channel  response by increasing a and ,L? in 
(36) and (37). All  simulation  results  shown  used Q: = ,L? = 0.5. 
As  stated  earlier,  the  joint  optimal  algorithm  appears  relatively 
insensitive: to cy and ,O when v is  large  enough. A more 
complete ;study of these  sensitivities  is  given in [15]. 

V. CONCLUSION 

In  this  paper, we  have  developed a number of algorithms for 
computing,  the  coefficients of the  shortening  impulse  response 
filter (SIRF). New  algorithms have been  provided  for  shorten- 
ing  either  the  channel or  the channel  and  echo  jointly. The  goal 
of the derivations  presented  was to generate  computationally 
efficient  means  to  calculate  the SIRF coefficients  in  real- 
time  using off-the-shelf DSP chips.  Additionally,  optimal 
algorithms  were  derived  that  can be used as a benchmark for 
future  woIk  on  impulse  response  shortening.  Simulation  results 
were  provided to demonstrate  the  capabilities  of  the  various 
algorithms,  and  verify  that  the  more  computationally  efficient 
algorithms  perform  adequately. 

The two-channel AR algorithm  provides an efficient  way 
to shorten  only  the  channel  response,  while  the  multichannel 
AR algori-thm provides a realizable  way  to  jointly  shorten  the 
echo  and  channel  responses. 

It  may  be possible  the SSNR measure is not  the  best  measure 
of equalization,  since  ultimately  the  channel SNR in  each 
subsymbol of the  multitone  system is what  is  important.  Future 
work  may  seek  to  develop SIRF coefficient algorithms  which 
maximize  the  capacity  of  the  multitone  transceiver  based  upon 
the channd SNR. Additionally, it may be possible to apply  the 
methods  presented  in  this  paper to communication  systetns  that 
use modullation techniques other than mullitone. 

APPENDIX 

As in  Section 11-B we  desire  to  choose w to minimize 
wTAW given w T B w  = 1. Of  particular  interest  here is the 
case  where B is  not  invertible.  Since B is  positive  semidefinite 
it  can  be written as 

where C2 is a diagonal matrix of the  positive  eigenvalues of B. 
The  columns of U are  the  orthonormal  eigenvectors  associated 
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with C2, and  the  columns  of N are  an orthonormal  basis of 
the  null  space  of B. The  columns of N are  orthogortal to the 
columns of U. Assume  that w is of length t and that B is of 
rank T (i.e. dim(C2) = r ) .  Every  vector w can  be  written as 

w XI uc-ly + N z  (-4-2) 

where y is  an arbitrary  vector of length T and z is an arbitrary 
vector  of  length (t - T ) .  If g T g  = 1 then  using  (A-1) and (A-2) 

wTBw = ( U C - l y  + N z ) ~ U C ’  UT(UCply + Nz) 
= y  ?J = 1. T (A-3) 

Using  (A-2)  the  problem is  now  to  choose y and z to minimize 

(yTC-1 UT + z T N T ) A ( U C p l y  + N z )  (A-4) 

given yTy = 1. First  minimize  with  respect  to z .  Equation 
(A-4)  can  be rewritten as 

yTC-I liTAUC-’y + 2yTCp1 UTANz  + z T N T A N z .  

(A-5) 

Setting  the  derivative of (A-5) with  respect  to z equal  to  zero, 
we  get 

= - ( N ~ A N ) - ~ N ~ A U C - ~ ~ .  (A-6) 

Substituting (A-6) into (A-4), the  quantity  that is k f t  to  be 
minimized  is 

(yTZ;-l  UT - yTC-I  UTAN((NTAN)-’)’)A 
(UC-ly - N ( N T A N ) -  1 N T A I I C - l y )  = yTCy 

(-4-7) 

where C is appropriatcly define. Using  (A-2)  and (A-6) the 
resulting  optimal SIRF coefficients  are 

wept = ( I  - N(NTAN)-’NTA)UC-lZ,i, (A-8) 

where lmin is  the  unit-length  eigenvector  associated  with  the 
minimum  eigenvalue of C given  in (A-7). 
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