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Optimum Finite-Length Equalization 
for Multicarrier  Transceivers 

Naofal Al-Dhahir, Member, IEEE, and  John M. Cioffi, Senior Member, IEEE 

Abstract- A new criterion  for  partially-equalizing  severe- 
IS1 channels  to  reduce  the  cyclic  prefix  overhead of the &- 
Crete multitone (DMT) transceiver,  assuming  a hed transmission 
bandwidth, is introduced.  The  equalized DMT is shown to recover 
a  significant  portion of the  performance loss incurred because of 
the  use of a moderate-size  PFT in the DMT to I-eduee  latency 
and  implementation  cost.  In  particular,  equalizers  designed using 
our  new criterion  result in a  higher DMT performance margin 
than  traditional  mean-square-error DMT equalizers. Finally, ad- 
ditional  promising  methods  that  further enhance the  performance 
of the  equalized DMT are  investigated. 

I. INTRODUCTION 

ULTICARRIER  modulation  (MCM) has been recently 
demonstrated to be a viable technology for high-speed 

data transmission over spectrally shaped noisy channels. 
Modems designed using the MCM principle parse, using an 
orthogonal transformation, the channel spectrum (which could 
exhibit wide variations over the transmission bandwidth) into 
a large number of parallel, independent, and flat subchannels. 
The optimum orthogonal transformation is based on the 
eigendecomposition of a channel-and-noise-dependent  ma^ 
[13]> which  under the assumption  of a largc number of 
subchannels causes the  MCM transceiver to achieve close- 
to-optimum pcrformance levels. 

To avoid  thc formidable costs associated with the eigende- 
composition of a large matrix, another form of MCM, called 
the discrete multitone (DMT), that uses the computationally- 
efficient fast Fourier transform (FFT) to create the independent 
subchannels was proposed in [8]. When  combined  with  band- 
width optimization and  optimization or the bit distribution 
across the usable subchannels, the performance of the FFT- 
based MCM transceiver becomes very close to that of the 
optimum eigendecomposition-based MCM trmsceiver. 

To ensure independence of the subchannels for a finite N -  
point FFT, every input block of size N is prefixed  with a 
sequence of symbols whose length is equal to the channel 
memory such that the input sequence looks periodic to the 
channel. The periodicity of the input renders the channel- 
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description matrix circulunt, making the ETT basis vectors 
identical to the channel eigenvectors (assuming white noise). 

For highly dispersive channels, the length of the cyclic pre- 
fix is large resulting in an appreciable bit rate loss, especially 
for a moderate FIT size. In this paper.  we investigate the 
use of equalization to reduce the cyclic prefix ovcrhead by 
optimally shortening the channel impulsc response duration. 
In particular, we derive the optimum equalization criterion in 
conjunction with the DMT. We demonstrate that our proposed 
equalized-DMT system is a valuable solution to the problem 
of approaching theoretical performance levels under practical 
complexity constraints. 

The rest of this paper is organized as follows. In Section 11, 
after a brief overview of the DMT transceiver, we derive the 
optimum equalization criterion for the DMT  and  show  how to 
compute the equalizer settings under this criterion. Simulation 
results that compare the performance of the equalized DMT, 
under ow new criterion and a previously-used criterion, with 
a theoretical performance upperbound and the case of no 
equalization are presented in Section 111. Finally, in Section IV, 
we describe several measures that could result in an additional 
performance improvement for the equalbed-DMT syskm. 

II. A NEW EQUALIZATION C M E N O N  FOR 'I".! DMT 

4. System Model 

A block diagram of the basic DMT transceiver is depicted in 
Fig. 1. An input bit stream of rate R o , v ~  (b/s) is buffered into 
blocks  of bDMT = RohfrT bits,  where T is the multicauier 
symbol period. Thcse 6 U ~ ~  bits are distributed optilnally 
across N 5 % subchannels. The hits assigned to the ith 
subchannel, bi, are mapped  by the DMT encoder to the ith 
complex subsymbol of the kth transmitted symbol, which is 
denoted by X+. These complex subsymbols are then trans- 
formed by an N-point IFFT into 2v real samples by imposing 
the Hermitian symmetIy condition X+ = X$-i,k (I 5 
i 5 N ) .  The N samples are then converted from parallel 
to serial format and applied, after adding a cyclic prefix and 
passing them through a digital-to-analog converter (DAC) 
and a low-pass filter; to the channel h(tj. In this paper, 
we shall exclusively deal with the equivalent discrete-time 
representation of the channel, which  will be assumed an FIR 
filter  with (v + 1) taps, i.e., h ( D )  = ho + hlD + . t h,,D". 
At the receiver, the output signal is first low-pass filtcred 
and sampled, then the cyclic prefix is removed. The resultant 
N real output samples are converted to parallel format and 
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Fig. I .  Block diagram of the DMT transceivzr (P/S and S/P mean parallel-to-stxirial  and sed-to-parallel converters, respectively). 

then transformed, through  an N-point F F T ,  to N complex 
subsymbols that are individually decoded. 

B. Equalization for the DMT 

In the DMT, an N-point FFT is used to divide the channel 
spectrum into N subchannels. Strictly speaking, N has to be 
infinite for the subchannels to be independent and  memoryless. 
On the other hand, to reduce the implementation cost, M has 
to be finite (preferably a power of 2 and not larger than 512). 
The use of a finite input blocklength on IS1 channels results 
in interblock interference (IBI) which degrades performance 
significantly.  To eliminate IBI in the DMT, the v last input 
samples in each input block of length N are repeated at 
the beginning of the block. This makes the input sequence 
look periodic  and clears the channel memory  at the end 
of each input block making successive block transmissions 
independent. 

However, on severe-IS1 channels (i.e., channels with large 
v), adding the cyclic prefix results in a bit rate reduction by 
a factor of &, which could be quite significant, even for a 
moderate FFT size. 

An elegant solution to this problem  was suggested in 
[6] and [7] where the authors proposed to linearly equalize 
the channel impulse response (CIR), denoted by the vector 
h = [ho . . .  h,] which is of length (v + 1), to a much 
shorter target impulse response (TR)  of length ( N b  + 1), 
thus improving the bit rate by a factor of (1 + -). In 
[6] and [7] ,  the TIR was  not a fixed partial response (as  it 
is  usually assumed for equalized maximum likelihood (ML) 
detection using the Viterbi algorithm). Instead, it is chosen 
as the impulse response of length ( N b  + I) that is closest, 
in the mean square sense, to the combined-channel-equalizer 
impulsc response. 

More  specifically, referring to Fig. 2, the time-domain 
equalizer (TEQ) and TIR coefficients are chosen to minimize 
the mean square of the error sequence ek = zk - r k .  Under 
the assumptions of a length-ilrf TEQ denoted by the vector 

unit-energy constraint (UEC) on the TIR b = [bo . . . bhrn., 1, 

, 

def 

def 

w = [tu0 ' .  . w N f  -1 I t  (where (.)t denotes the transpose), a 
def 

~ 

h-n 

Fig. 2. Block diagram of the TEQ. 

and uncorrelated input symbols,  it  was shown in 1111 and 
[4] that the optimum TIR, bopt.. is equal to the unit-nom 
eigenvector that corresponds to the minimum eigenvalue of the 
channel-and-noise-dependent matrix R a  defined as follows 

where Omx is the m x n null matrix, I, is the identity matrix 
of size m, (.)* denotes the complex-conjugate transpose, A 
is the equalizer delay (0 5 a 5 Nf + v - rvt, - I), 
s def N f  + v - A - Nb - 1, S, is the average energy of the 
input symbols, R,, is the Arf-dimensional noise-correlation 
matrix, and H is an N f  x ( N f  + v) ,channel matrix given by 

Once bopt. is determined, the minimum-mean-square-error 
unit-energy-constrained (MMSE-UEC) TEQ coefficients are 
calculated from [2] 

By optimizing the TEQ and TIR coefficients, the equalized- 
DMT transceiver achieves high performance (since it elimi- 
nates IBI with a much shorter cyclic prefix overhead) and low 
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in~plenlentation cost (because of the moderate F€T size and available bandwidth is used). Furthermore, the "1+" and "-l", 
equalizer length used). Indeed, as we shall show in Section terms can be typically ignored, simplifying (5) to 
111, the performance of the equalized-DMT transceiver, when 
its parameters are chosen properly, can get very close to 
theoretical performance limits. (6) 

C. The Geometric SNR 

Although the mean square error (MSE) is the most popular 
equalization criterion since it is  easy to analyze and since 
it lends itself to a simple adaptive implementation (the per- 
formance surface has a unique global optimum), we shall 
argue next that it is  not the optimum equalization criterion 
in conjunction with the DMT. 

Assuming that the subchannels of the DMT are equally 
spaced (each assumed to be of width Hz), independent, 
and memoryless, then the total number of bits transmitted in 
one DMT symbol is given  by 

N 

2=1 

SNR,  is the signal-to-noise ratio of the ith subchannel 
and  is  defined by SNRi ef where Sac,i, %+, and 
I Hi 1 are the input encrgy, noise power spec%ral density (psd), 
and channel gain of the ith subchannel. Ti is the gap [lo] 
that characterizes the distance (in  dB) between SN& and 
the SNK required to achieve capacity, and is a function of 
the assumed probability of error. We shall assume that all 
subchannels are required to  maintain the same probability of 
error, which results in Ti = r for all subchannels. It was 
shown in [lo] that r M X ( Q - ' ( + ) ) ' ,  where 3;n is the 
desired system margin, yeff IS the effective coding gain of 
m y  applied code, P, is the assumed constant symbol error 
rate (for a QAM signal constellation) across the subchannels, 
and Q(x)  ' k f  s," e- y d u .  In addition, we shall assume a fiat 
input energy distribution across the subchannels,' in which 

37eff 

1L2 

case SWR; = S,/H,IZ 
Equation (3) can be expressed as follows 

R,,,, . 

where the geometric SNR is  defined by 

For the purposes of this paper, we shall assume that the 
input powcr level and the sampling frequency are chosen such 
that the number of usable subchannels m = 4 (i.e., all the 

This awumption has been shown to resnlt in a negligible performance loss 
from the case where the shape of the input psd is optimized [3], [9].  

This expression makes the name  "geometric SNR' obvious. 

DMT as follows 
Using (4), we can compute the achievable bit rate of the 

where f3 is the sampling frequency. 
Therefore, assuming a fixed transmission bandwidth, max- 

imizing the achievable bit rate of the DMI' is equivalent to 
maximizing its geometric SNR. 

For the equalized DMT, the geometric SNR is approxi- 
mately  given by 

where Bi and Wi are the ith FFT coefficients of the TIR  and 
the TEQ, respectively. 

Choosing w and b to minimize the mean square of the 
equalizer error sequence does not necessarily maximize (83. 
Instead, we propose to use the (b, w) combination that maxi- 
mizes SNR,,,, to optimize the performance of the equalized 
DMT. In the sequel, we shall refer to this equalizer by the 
name geometric TEQ. 

D. Compuiing the Optimum Geometric TEQ Settings 

Computing the optimum settings of the geometric TEQ is a 
two-step pocedure. First, we need to compute the coefficients 
of the optimum TIR of a given length ( N b  + 1) that maximizes 
SNR,,,,. Second, we use (2) to compute the coefficients of 
the length-Nf TEQ that results in the minimum mean square 
error when equalizing the original CIR to bopt. 

To simplify the optimization procedure, we shall assume 
that the input S N R  is high enough so that we can ignore the 
dependence of SNR,,,, on I? and use the entire available 
bandwidth, Le., N = %. In this case, maximizing SNR,,,, 
as given by (8) is equivalent to maximizing the cost function 
L(b) defined as follows2 

'This cost function also ~ S S I ~ I B S  Lhal the noise at the output of the 
equalizer is independent of b, which is not exactly accurate [because of the 
interdependence between w and b through ( 2 ) ] ,  nevertheless, it simplifies the 
analysis considerably. 
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Now 

. . .  ,-j%iNb t 1 .  
Therefore, (9) becomes 

where 

le-j$ijvb . . . e-jgi 1 

To maximize L(b) as determined by (10) while avoiding 
the impractical solution of an infinite-gain TIR, we  need to 
impose additional constraints on b. One such constraint is the 
unit-energy constraint b*b = 1. However, with this constraint 
alone, it can be readily checked that the optimum TIR is 
the memoryless channel, i.e., 1 & 1 2  = 1 V i  This requires 
“full” equalization of the CIR which could result in a large 
equalization MSE (especially for short TEQ lengths) and is 
not  needed since we are using the DMT to combat ISI! 

Therefore, we shall constrain the MSE of the TEQ to remain 
below a maximum tolerable value, call it MSE,,,. Using the 
results of [4], this latter MSE condition is equivalent to 

b*Rab 5 MSE,,,, (1 1) 

where RA was  defined in (1). 
In summary, we  want to maximize the Lagrangian 

subject to the constraint b*Rab 5 MSR,,,. 
This is a nonlinear constrained optimization problem which 

does not  have  an analytical closed-form solution for b. How- 
ever, starting with a certain initial condition for b, we can 
arrive at a locally-optimum solution using iterative numer- 
ical techniques. In this paper, we shall use the MATLAB 
optimization toolbox, which implements sequential quadratic 
programming (SQP) methods to perform  the optimization [l]. 

Basically, at each iteration of the SQP algorithm, the Hes- 
sian of the Lagrangian cost function in (12) is approximated 
using a quasi-Newton updating procedure. Then, this is used to 
formulate a quadratic programming subproblem whose solu- 
tion establishes a search direction for a line search procedure 
W I .  

E. An Upperbound on Peformance 
An upperbound on SNR,,,, can be obtained by letting the 

DMT blocklength and the number of equalizer taps become 
infinite? This upperbound can be derived as follows 

for high input SNR 

where Oopt is the optimum transmission  bandwidth and is 
equal to lim,v+w $ f s  (which is equal to $ only for high 
input SNR). Note that the second inequality follows from 
the definition of the “geomehic average” as the blocklength 
becomes infinite [14], while the third inequality is a well- 
known relationship between the “geometric average” and the 
“arithmetic average” of a function [14]. Finally, the fourth 
line above follows from the relationship between W,,, ( f )  and 
Bopt( f) for infinite-length filters, namely  that [141, [lo] 

111. STMULATION RESULTS 

In this section, we shall perform computer simulations to 
evaluate the performance of the equalized DMT. As it is 
usually the case in practice, we shall choose the margin ym as 
a measure of performance. From the analysis of Section 11-C, 
the DMT  margin can be calculated as follows 

In our simulations, we considered the eight carrier-serving- 
area (CSA) loops [ 151 whose configuration is shown in Fig. 3. 
It is  worth mentioning that some of these loops have bridged 
taps and multiple gauge changes which increase the seventy 
of the channel characteristics. 

The simulation parameters used are typical of the high-bit- 
rate digital subscriber loop (HDSL) environment. More specif- 
ically, the two-sided AWGN psd is equal to -1 13 dBm/Hz 

31n fact, there is no need for  the equalizer  as the hlocklength  becomes 
infinite  since the effect of the cyclic prefix  overhead  becomes negligible. 
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Loop 1 5 900126 1800/26 

50R4 50126 100124 50R4 50R4 
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Loop 7 

Loop 8 
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Fig. 3. Configuration of the 8 CSA  HDSL loops under study (length (in 
ft.)/gauge). 

and near-end crosstalk (NEXT) is modeled by the transfer 
characteristics iHNExT(jj i2 =  NEXT^; with ~ENEXT = 

(corresponding to a 50-pair cable). The target bit rate is 
800 kbps, the input power level is 14 dBm (equally distributed 
across the entire Nyquist bandwidth), the symbol error rate is 
fixed  at  across the subchanncls, and a coding gain of 
4.2 dB is assumed. 

The chosen FFT size for the DMT is 128. The aEQ is 
assumed to have N f  = 16 taps and the memory of the TIR 
is N b  = 4. For the geometric TEQ, we chose the maximum 
allowable MSE level to be -17 dB, the initial condition for 
the TIR to be equal to &[I . . . 11, and the delay was 
not optimized but rather set equal to the optimum delay of the 
MMSE-UEC equalizer. 

In  Tables I-IV,  we list the achievable margin of the DMT 
on the 8 CSA loops when equalized by the geometric or the 
MMSE-UEC TEQ's for sampling frequencies of 384, 416, 
448, and 480 kHz, re~pectively.~ For comparison purposes, 
we also calculated the upperbound on margin under the 
ideal assumption of an infinite blocklength and optimized 
transmission bandwidth that was derived in Section LL-E and 
a lower bound on  margin  when no equalizer is used  (i.e., a 
cyclic prefix of length v is assumed). 

Comments: 
1) It is clear that the use of equalization results in a sub- 

stantial margin improvement over the case of no equal- 
ization. An additional increase in  margin  is achieved 
by designing the equalizer based on the geometric SNR 
criterion as  opposed to the MSE criterion, as it  is further 

of 3, 3.25, 3.5, and 3.75 kHz. respectively. 
4These sampling frequencies correspond to multicanicr symbol  rates (+) 

TABLE I 
COMPARISON BETWEEN THE MARGIN (IN dB) OF THE DMT UNDER THE 

CONDITIONS OF h3NITE BLOCKLENGTH, NO TEQ AND EQUALIZED BY THE 
GEOMETRIC AND MMSB-UEC TEQs FOR THE 8 CSA HDSL LOOPS 
AT A SA"I,FNG FREQUENCY Ob 384 H Z  (THE cI\fI.III.ATET) IJXSES 
(IN dB) ARE WITH RESPECT M THE INLNFINITEBLOCKLENGTH CASE) 

Loop No MMSE  UEC Geometric Infinite 
No. ' TEQ TEQ TEQ Blocklength 

1 
B.W. (kHz) I ym 

3.42 I 7.25 6.60 1 4.07 7.66 I 3.01 180 1 10.67 
ym I Loss T~ 1 Loss 7m 1 Loss 

2 i 158 i 11.52 i 7.91 i 3.60 i 6.98 ~ 4.54 i 3.97'i 7.55 

TABLE II 
COMPARISON BEXWEEN THE MARGIN (IN dB) OF THE DMT U N U E K  THE 

CONDITIONS OF INFINITE BLOCKLENGTH, NO TEQ AND EQUALIZED BY THE 

AT A SAMPLING  FREQUENCY OF 416 H Z  (THE C41.~:III.A'I.HI~ LOSSES 
(IN .dB) ARE WITH RESPECT TO THE hl3NI'TEBLOCKLENGTH CASE) 

GEOMETR~C AND MMSE-UEC TEQs FOR'THE 8 CSA HDSL LOOPS 

L O P  No MMSE-UEC Geometric Infinite 
No. TEQ TEQ TEQ Block Length 

6 

7.12 3.13 3.72  6.52 2.60 7.65 10.25 200 8 
8.09 2.36 4.56 5.89  3.91 6.53  10.45 158 7 
7.13 1.66 3.73 5.07 2.75  6.04  S.79 210 

TABLE IJI 
COMPAKISON BETWXW 'IHh MARGIN (IN dB) OF THE DMT UNDER THE 

CONDFIlONS OF INFJNITE BLOCKLENGTH, NO TE(Z AND EQUALIZED BY THE 
GEOMETRIC AND MMSE-UEC TEQs FOR THE 8 CSA HDSL LOOPS 
AI A SAMPLING FREQUENCY OF 448 H z  (rm C 4 ~ c u ~ a . r ~ ~  Lossm 
(IN dB) AR€ WITH RESPECT  TO THE ~FTNITEBLOCKLENGTH CASE) 

demonstrated in Fig. 4 for the sampling frequency f s  = 
448 kHz. 

2) The amount of margin improvement because of equal- 
ization and the margin loss with respect to theoretical 
performance limits differ from one loop to the other. 
For example, the use of the geometric TEQ brought us 
to within 2.38 dB from the theoretical bound for Loop 
5 at fs = 480 H z .  We believe that yet an appreciable 
portion of this remaining margin gap can be bridged 
using the measures that will be outlined in Section IV. 
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3) Other factors that control the  margin difference between TABLE IV - 
the 4 studied cases are the  values of N f ,  Nb, N ,  input 
power, IZISE,,,,,, and .fs. The choice of N f  represents  a 
tradeoff  between complexity and  performance  (ability of 
the equalizer to satisfy  the  MSE  constraint).  Similarly, 
while choosing lvb too small reduces  the  bit rate loss 
due  to cyclic prefix,  the  resulting equalization MSE with 
a length-Nf equalizer might  be  much  higher  than its 
maximum allowable value of MSE,,,. Increasing the 
FFT size N brings the performance of the equalized 
DMT closer to the upperbound of Section 11-E, nev- 
ertheless, could result in  a prohibitive implementation 
cost. Concerning the effect of the  input  power,  we 
must  always  keep in mind that increasing it beyond 
a certain level is useless  because of the  presence of 
crosstalk. Choosing the  maximum allowable MSE level, 
MSE,,,, represents a compromise  between  having a 
cost-effective TEQ that  can  meet it and  achieving  ac- 
ceptable performance in the sense that the equalized CIR 
closely resembles the calculated TIR. Finally, choosing 
the sampling frequency (which is equal  to  twice the 
transmission bandwidth in our case  since we assume  that 
N = e)  outside of a certain range could result  in an 
appreciable  margin  loss, as depicted in Fig. 5. Ideally, 
the sampling  frequency  should  be  high enough and  the 
transmission  bandwidth (or equivalently m) is jointly 
optimized with b, on  a per-loop basis, to maximize  the 
margin  (c.f.  Section  IV-A). 
In  all of our simulations, we have found that, at  the 
optimum TIR, the MSE inequality constraint is met 
with equality. This  means  that  the solution of our 
non-linear constrained optimization problem lies on  the 
boundary of the feasible region. This  observation  further 
consolidates our earlier argument that minimizing MSE 
of the TEQ does not'necessarily maximize SNR,,,,,,. 
To illustrate further the action of the  geometric  TEQ, 
we have plotted in  Fig. 6 the magnitude responses of 
the optimum TIR's of the geometric and  MMSE-UEC 
TEQs together with  that of the original CIR (normalized 
to have unit  energy). It is clear that the amplitude 
response of the optimum  TIR of the geometric TEQ 
very closely resembles  that of the original CIR,  with the 
important  advantage  that  it  has  a  much  shorter impulse 
response  duration. 
Finally, a few  words  about the complexity-performance 
trddeoffS are in order. In our simulations, the perfor- 
mance  improvement of the geometric  TEQ over the 
MMSE-UEC  TEQ  is  achieved  with  both equalizers 
having the same  number of taps.  Furthermore, the op- 
timal  settings of both equalizers are calculated (from 
their corresponding TIR's) using (2), hence  both require 
the same computational complexity. However, the main 
difference  in  the  complexity of the two equalization 
schemes lies in the algorithm used to compute the 
optimum  TIR settings. Under the  MMSE-UEC  criterion, 
they are computed  by  solving a constrained convex 
quadratic  programming  problem  that has a unique global 
optimum. On the other hand,  under  the  geometric  SNR 
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~~ 

COME4RISON BETWEEN THE MARGIN (IN dB) OF TW. DMT U N D k x  'L'Hh 

CONDITIONS OF INFINITE BLOCKLENGTH. NO TEQ AND EQUALIZED BY THE 
GEOMETRIC AND MMSHJEc TEQS FOR THE 8 CSA HDSL LOOPS 
AT A SAMPLING FREQUENCY OF 480 kHz (THE CALCULATED LOSSES 
(IN dB) A R E  WIW RESPECT TO THE INFINITE-BLOCKLENGTH CASE) 

Loop 1 Infinite I Geometric I MMSE-UEC I No 
No. TEQ TEQ TEQ Block Length 

1 1  
B.W. (kHz) I ym 

3.27 1 7.40 6.62 I 4.04 7.23 I 3.43 180 I 10.67 
ym 1 Loss -ym I Loss (̂m I Loss 

2 I 158 I 11.52 I 6.68 1 4.84 1 6.06 I 5.46 j 2.65 I 8.87 
3 I 214 I 10.30 I 7.88 I 2.42 I 6.90 1 3.39 I 3.92 I 6.37 

I 
2 3 4 5 6 7 8 

Loop Number 

Fig. 4. Margin of the DMT for the 8 CSA loops with and without  equaliza- 
tion for a  sampling  frequency of 448 kHz. 

criterion, we need  to solve a constrained nonlinear 
programming  problem  that  does  not  have a unique 
global optimum in general: this is the price paid for 
the  improvement in performance. 

IV. RELATED ISSUES AND FUTURE RESEARCH 

In this section, we briefly explore several measures to 
enhance further the performance of the  equalized DMT by 
relaxing some of the  assumptions  made in this paper. These 
measures are currently under investigation and  will be reported 
in future publications. 

A. Optimization of the Transmission Bandwidth 
An important component of optimizing the performance of 

the DMT is bandwidth optimization. Typically, the sampling 
frequency is chosen high enough to include the maximum 
anticipated transmission  bandwidth.  Then,  bandwidth opti- 
mization algorithms of the type discussed in [91 are applied to 
determine the optimum number of subchannels that should be 
used out of the $ available ones to, say, maximize  the  margin. 
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11 
Loop 8,Nf=16.Nb=4.N=128,R=800kbps,lnplrlPower~l4d8m 

I 

i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 " 

5t _ -  MMSPUEC-TEO 
. . .  No TEG 

- 1  I . . . .  ..................... . . . . . . . .  3t . .  

. . . . . . . . . . . . . . . . . . . .  . . . . . .  
. .  i 

400 
Sampling Frequency (kHz) 

450 500 

Fig. 5. Variation  of the DMT margin with the sampling frequency for Loop 
8. 

Loop 5,N'=l6,Nb=4,N=128,1~=448 kHz,R=803 k b s  

I 
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Frequency (radians) 

Fig. 6. Magnitude  responses of the optimum TR's of the geometric and 
MMSE-UEC TEQ's together with that of the original CIR (normabed to 
have unit  energy). 

Subchannels whose signal-to-noise ratio can not support a 
specified minimum number of bits are excluded. 

In this paper, we assumed for simplicity that all 4 subchan- 
nels are used, Le.,  no bandwidth optimization was performed. 
A higher  margin for the equalized DMT can be achieved by 
jointly optimizing the- TIR coefficients b and the transmis- 
sion bandwidth (= $) to maximize (13). Note that when 
the transmission bandwidth is allowed to  vary (through the 
optimization of x), then optimizing the margin of the DMT 
transceiver is  not necessarily equivalent to maximizing thc 
geometric SNR, as it can be easily verified from (13). Statcd 
differently, maximizing SNR,,,, is equivalent to maximizing 
the channel throughput (in bkymbol) which also maximizes 
the bit rate, at a fixed transmission bandwidth. Howcver, there 
could be another (b, ~l') combination that results in a higher 
bit rate 'by achieving an optimum compromise between the 
channel throughput and the bandwidth [3].  

10.5, 
Lwp3Js=448kHz,Nf=16,Nb=4,N=128,lnput Power=lQdBrn 

, ! ---1 

Fig. 7. Variation of the DMT margin with the equalizer delay for Loop 3. 

B. Choice of f h e  Equalizer Delay 
For the MMSE-UEC TEQ, a characterization of the unique 

optimum delay was given in [4]. There, it was also demon- 
strated that choosing the delay outside of a certain range 
around the optimum value could result i n  a significant pelfor- 
mance degradation. For the geometric TEQ, determining h e  
optimum delay is more difficult since the effect of the delay A 
appears only in the inequality constraint b*Rab 5 MSE,,,,,. 
In this paper, we have set the delay of the geometric TEQ 
equal to the optimum delay of the MMSE-UEC TEQ, which 
might not be the optimum choice. Optimization of the delay 
could result in a further improvement in the performance of 
the geometric 'IEQ over that of the MMSE-UEC TEQ. To 
illustrate. this point, we have plotted in Fii. 7 the variation of 
the margin of the DMT with the delay for both the geometric 
and the MMSE-UEC T E Q s .  For the given scenario, choosing 
thc delay of the geometric TEQ to be equal to the optimum 
delay of the h&fSE-UEC TEQ (which  we detetmined to be 
8) results in a 0.47 dB margin loss from the optimum margin 
achieved at A = 6. 

C. Choice of f h e  initial Condition 

For  our constrained nonlinear optimization problem, the 
choice of the initial condition affects the optimum TIR as 
computed by the iterative numerical search procedurc. In our 
simulations, we have found that the normdized all-ones vector 
-[I 1 . . I 1 ] is a good initial condition. However, it 
rmght  be necessary to compare the achievablc margin with a 
number of different initial conditions to improve performance. 

As an example, we have listed .in  Table V the calculated 
"optimum" "s for different initial conditions for fs = 448 
kHz on loop 1 and their corresponding geometric SNR's and 
margins. 

It can be seen from the table that using the unit vector 
[I 0 ... 0 ] as an initial condition instead of the all-ones 
vector results in a DMT margin loss of 0.79 dB. It i s  also 
interesting to note that completely different seltings for the 
TIR could result in very close DMT margin values. 



AL-DHAHIR AND CIOFFI: OPTIMUM FINITE-LENGTH EQUALIZATION FOR MULTICARRER  TRANSCEIVERS 63 

TABLE  V 

THE GEOMETRIC TEQ FOR CSA HDsL h O P  1 AT A SAMPLING hZQLFNCY OF 448 k& 
EFFECT OF THE ~ I T I A L  CONDITION ON THE GEOMETRIC SNR AND MARGIN (BOTH IN dB) OF 

D. Pole-Zero Implementation of the Equalizer 

Another  promising technique to  improve further the per- 
formance of the equalized DMT toward the theoretical  per- 
formance upperbound ol infinite  blocklength is to increase 
the  number of equalizer taps. While it is not clear whether 
the geometric  SNR should be a monotonically increasing 
function of N f  , it can be easily shown that & is. Therefore, 
increasing N f  allows us to decrease Nb while still satisfying 
the MSE constraint b*Rah 5 MSE,,. In fact, MSE,,, 
could be made  even  smaller than its value of - 17 dB assumed 
throughout  this  paper. The resulting  reduction in the  value of 
N b  reduces  the data rate loss due to cyclic prefix  overhead, 
thus  improving  the DMT performance. 

In order to avoid the high  implementation cost that could 
result when  implementing long FIR equalizers, we propose to 
use  the algorithm that we derived in [5] to  convert long FIR 
equalizers to stable pole-zero equalizers with  much fewer taps. 

E. Other Constraints 

In this work,  we sought to maximize the geometric  SNR 
of the DMT subject to a unit-energy constraint on  the  TIR 
and a maximum allowable MSE of the  equalizer. Several 
other optimization problems are also possible and are worth 
investigating since  they  might result in TIR’s that  yield  better 
margins  than the ones we have  obtained here. We list some of 

alternative optimization  problems  next: 
Maximize SNR,,,, subject to a unit-tap constraint 
(UTC)  on b, Le., bi = 1 (1 5 i 5 Jvb + 1) and a 
maximum allowable equalizer  MSE. 
Minimize  MSE of the equalizer subject to either UTC or 
UEC and a minimum  allowable  geometric S N R  (needed 
to achieve a prescribed  margin for the  DMT). 
Maximize a weighted  sum of SNR,,,, and & 
subject to either  UTC or UEC. 
Impose a linear-phase constraint on  the  TIR  to reduce 
phase  distortion  by requiring symmetry of the TIR 
around its middle sample. 

V. CONCLUSION 
In this paper, we showed  that  the  optimum  finite-complexity 

equalization criterion for the DMT is maximizing  thc geo- 
metric SNR, assuming  that  the  transmission  bandwidth is 
fixed.  The  problem of computing the optimum target  impulse 

response of a given  length  was  formulated as a constrained 
nonlinear optimization  problem k d  solved  using  well-known 
iterative numerical techniques. 

Furthermore,  computer  simulations  on a set of CSA HDSL 
loops illustrated that  the  performance of the DMT with the 
geometric equalizer is better than  that  achieved  with  the 
previously-used  MSE  equalizer. Presently, we  believe that the 
geometric-equalizer-DMT combination represents a serious 
step toward  approaching  theoretical  performance limits with 
a practical implementation cost. Finally, additional  measures 
to improve further the performance of the  equalized  DMT,  that 
are currently under investigation, were  described. 
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