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ABSTRACT 

Time-domain equalization is crucial in reducing inter-carrier 
and inter-symbol interference in multicarrier systems. A 
channel shortening time-domain equalizer (TEQ), which is 
a finite impulse response (FIR) filter, placed in cascade with 
the channel produces an effective impulse response that is 
shorter than the channel impulse response. We show that fi- 
nite length minimum mean squared error (MMSE) and max- 
imum shortening SNR (MSSNR) TEQs are approximately 
symmetric, and infinite length MSSNR TEQs with a unit 
norm TEQ (UNT) constraint are exactly symmetric. A sym- 
metric TEQ halves FIR implementation complexity, enables 
the frequency-domain equalizer and TEQ to be trained in 
parallel, and exhibits only a small loss in hit rate over non- 
symmetric TEQs. In addition, a symmetric MSSNR-UNT 
TEQ reduces training computational complexity by a factor 
of 4 and doubles the length of the TEQ that can be designed. 

1. INTRODUCTION 

Multicarrier modulation (MCM) techniques such as orthog- 
onal frequency division multiplexing (OFDM) and discrete 
multi-tone (DMT) have been receiving increasing attention 
in the literature recently, and they have been deployed in nu- 
merous industry standards. Applications include the wire- 
less LAN standards IEEE 802.1 la and HIPERLAN2; Dig- 
ital Audio Broadcast (DAB) and Digital Video Broadcast 
(DVB) in Europe; and asymmetric and very-high-speed dig- 
ital subscriber loops (ADSL, VDSL). MCM is attractive due 
to the ease with which it can combat channel dispersion, 
provided that the channel delay spread is not greater than the 
length of the cyclic prefix (CP). The cyclic prefix is a copy 
of the last Y samples of each symbol which is prepended to 
the start of each symbol in order to make the convolution of 
the data and channel appear periodic. However, if the CP 
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is not long enough, the orthogonality of the suh-carriers is 
lost and this causes both inter-camer interference (ICI) and 
inter-symbol interference (ISI). 

A well-known technique to combat the ICI/ISI caused 
by an inadequate CP length is the use of a time-domain 
equalizer (TEQ). The TEQ is a finite impulse response fil- 
ter that shortens the channel so that the delay spread of the 
combined channel-equalizer impulse response is not longer 
than the CP length. The TEQ design problem has been ex- 
tensively studied in the literature [ I ]  - [lo]. This paper ana- 
lyzes the MMSE [I]  and MSSNR [41 TEQ design methods. 

2. SYSTEM MODEL AND NOTATION 

The multicarrier' system model is shown in Fig. 1. Each 
block of hits is divided into 4 bins, and each bin is viewed 
as a QAM signal that will be modulated by a different car- 
rier. An efficient means of implementing the multicamer 
modulation in discrete time is to use an inverse fast Fourier 
transform (IFIT). The IFFI  converts each bin (which acts 
as one of the frequency components) into a time-domain 
signal. After transmission, the receiver can use an FFT to 
recover the data within a bit error rate tolerance, provided 
that equalization has been performed properly. 

In order for the subcaniers to be independent, the con- 
volution of the signal and the channel must be a circular 
convolution. It is actually a linear convolution, so it is made 
to appear circular by adding a cyclic prefix to the start of 
each data block. The cyclic prefix is obtained by prepend- 
ing the last U samples of each block to the beginning of the 
block. If the C P  is at least as long as the channel, then the 
output of each subchannel is equal to the input times a com- 
plex scalar, The signals can then be equalized by a bank 
of complex gains, referred to as a frequency-domain equal- 
izer (FEQ). If the channel is longer than Y + 1, a TEQ is 
needed to shorten the channel. We use the notation h, w, 
and c = h * w to denote the channel, TEQ, and effective 
channel impulse responses, respectively; and L,, denotes 
the TEQ length. 
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Fig. 1. System model. (1)FFT: (inverse) fast Fourier trans- 
form, P/S: parallel to serial, S R  serial to parallel, CP: add 
cyclic prefix, xCP: remove cyclic prefix. 

3. THE TEQ IMPULSE RESPONSE 

This section shows that the MSSNR and MMSE designs of- 
ten lead to TEQs with highly symmetric impulse responses. 
Section 3.1 reviews MSSNR and MMSE design methods. 
Section 3.2 shows why symmetry occurs in TEQ impulse 
responses, and Section 3.3 analyzes infinite-length MSSNR 
and MMSE TEQ designs. 

3.1. The MSSNR and MMSE solutions 

Consider the maximum shortening SNR (MSSNR) TEQ de- 
sign [4]. This technique attempts to maximize the ratio of 
the energy in a window of the effective channel over the en- 
ergy in the remainder of the effective channel. Define H,,, 
and Hwa[l as in [41, so that cwln = H,,,w yields a length 
v+ 1 window of the effective channel, and cluoll = H,,llw 
yields the remainder of the effective channel. The MSSNR 
design problem can be stated as [4], [ 1 11 

max (wTBw) subject to wTAw = 1, (1) 
w 

where A and B are real, symmetric L,, x L,  matrices, 

A = H;,dLaii, B = H:t,Hwtn. (2) 

Solving (1) leads to a TEQ that satisfies the generalized 
eigenvector problem, 

Bw = XAw. (3) 

The solution for w will he the generalized eigenvector cor- 
responding to the largest generalized eigenvalue A. 

Iterative and adaptive implementations of the MSSNR 
approach have also been proposed. In [SI, an iterative al- 
gorithm was proposed which performs a gradient descent of 
llcWall 11'. Although it is not mentioned in [SI, this algorithm 
needs a constraint to prevent the trivial solution w = 0. A 

natural constraint is to maintain JJwJj = 1 by renormaliz- 
ing w after each iteration. A blind, adaptive algorithm was 
proposed in [9], which is a stochastic gradient descent on 
I I C , ~ I ~ ~ ~ ~ ,  although it leads to a window size of U instead of 
v + 1. For these two algorithms, the solution must satisfy 

min (wTAw) subject to wTw = 1. (4) 
W 

This leads to a TEQ that must satisfy a traditional eigenvec- 
tor problem, 

The solution is the eigenvector corresponding to the small- 
est eigenvalue. We will refer to the solution for w in (3) as 
the MSSNR solution, and the solution of ( 5 )  as the MSSNR 
Unit Norm TEQ (MSSNR-UNT) solution. 

When the input signal is white and there is no noise, 
the MMSE design produces the same TEQ as the MSSNR 
design [12]. This can be extended to the noisy case to show 
that the TEQ for the MMSE design must satisfy [I31 

Aw = Xw. (3 

Bw = X(A + R,)w, (6) 

where X is the largest generalized eigenvalue of the matrix 
pair (B, (A + G)). This allows for a unified treatment of 
the MSSNR and MMSE TEQ designs. 

3.2. Symmetry in eigenvectors 

Let J he the square matrix with ones on the cross diagonal, 
and zeros elsewhere. Symmetric centrosymmeuic N x N 
matrices are defined as matrices in the set 

VN = { C  : CT = C, JCJ = C } .  (7) 

Symmetric centrosymmetric matrices of size N x N have 
exactly [N/21 symmetric eigenvectors and [NISI skew- 
symmetric eigenvectors [141. This result can be extended 
to the generalized eigenvector case. 

Theorem 3.1 If A, B E V L ~  (so they are symmetric cen- 
trosymmetric) and A is invertible, then the eigenvectors of 
(A-lB) can always be chosen to be symmetric or skew- 
symmetric. Furthermore, ifthe eigenvalues of (A-'B) are 
distinct, then al/ of the eigenvectors will all be symmetric or 
skew-symmetric. 

Proof: Since (A-'B) is centrosymmetric, J (A-'B) J = 
A-'B. Thus, if w is an eigenvector of A-'B, it satisfies 

(JA-~BJ)  = X W ,  

A-'B(Jw) = X (Jw), 
A-'B(-Jw) = X (-Jw) (8) 

where we have made use of JJ = I. Thus, if w is an eigen- 
vector of (A-IB) with eigenvalue X, then Jw and -Jw 

v - 98 



0 3  
- MSSNR 
- -  MSSNR-UNT 

0 25 

Fig. 2. Energy in the skew-symmetric part over the en- 
ergy in the symmetric p u t  of the TEQ. The data was delay- 
optimized and averaged over ADSL CSA test loops I - 8. 

are also eigenvectors with the same eigenvalue A. Thus, for 
a given eigenpair (A, w), we can always force the eigen- 
vector to be symmetric, why,,, = (w + Jw)/Z, or skew- 
symmetric. wSkew = (w - Jw)/Z, without changing the 
eigenvalue. 

If all of the eigenvalues of A-’B are distinct, then its 
eigenvectors are unique. Thus, w, Jw, and -Jw must all 
be identical (up to a scalar, such as -1). This requires each 
w to be either symmetric or skew-symmetric. 

For the channel convolution matrix H, we have HTH E 
VL-. This suggests that A and B may also be in VL,, since 
A = H:ailH,aii and B = Hz,,H,,,, rather than HTH. 
Unfortunately, A and B are not perfectly symmetric cen- 
trosymmetric, but they are approximately so. In addition, A 
is always invertible when the channel is longer than v + 1 
[13]. Thus, the eigenvectors of A and of A-’B will all be 
uppmximarely symmetric or skew-symmetric. Furthermore, 
we can replace A by (A + R,) in Theorem 3.1 to obtain 
similar results for the MMSE case. Oddly enough, the fi- 
nite length MSSNR and MSSNR-UNT TEQs always seem 
to be nearly symmetric rather than nearly skew-symmetric, 
and the point of symmetry is not in the center of the TEQ. 

To quantify the symmetry of the MSSNR and MSSNR- 
UNT TEQ designs for various parameter values, we com- 
puted both TEQs for 3 5 L,  5 200. For each TEQ, we 
decomposed w into wIym and w,kew, and then computed 
~ / W . ~ , , ~ ~ * / ~ ~ W ~ ~ _ ~ / ~ .  A plot of this ratio is shown in Fig. 2. 
The transmission delay in samples, A, was determined via a 
global search for the MSSNR solution, and the same A was 
used for each corresponding MSSNR-UNT solution. The 
ratios were computed for Carrier Serving Area (CSA) test 
loops 1 through 8 and then averaged. Matlah code to repro- 
duce Fig. 2 is available at [15]. 

The MSSNR-UNT TEQ becomes increasingly symmet- 
ric for large TEQ lengths. whereas the MSSNR TEQ is ap- 
proximately symmetric for all lengths, but does not display 
as strong a trend. Symmetric TEQs can be initialized by 
only computing half of the TEQ coefficients. For MSSNR, 
MSSNR-UNT, and MMSE solutions, this reduces the prob- 
lem from finding an eigenvector (or generalized eigenvec- 
tor) of an L., x L,  matrix to finding an eigenvector (or 
generalized eigenvector) of a lL,/Z] x [L,/2] matrix [14]. 
This leads to a significant reduction in complexity, at the ex- 
pense of throwing away the skew-symmetric portion of the 
filter. Reduced complexity algorithms are discussed in Sec- 
tion 4. 

Yet another advantage of a perfectly symmetric TEQ is 
that is has a linear phase with known slope. Thus, if the 
channel is known, the phase response of the effective chan- 
nel is known before the TEQ is designed. This allows the 
FEQ to be partially trained in parallel with the TEQ. 

3.3. Infinite length TEQ designs: asymptotic results 

This section examines the limiting behavior of A and B, 
and the resulting limiting behavior of the eigenvectors of A 
(i.e. the MSSNR-UNT solution). 

Theorem 3.2 For a channel convolution matrix H and A 
as in (21. 

where / /  . 1 1 ~  denotes the Frobenius nonn 

Sketch of proof: Under the assumptions 

AI: A > Lh > U, 
A2: L,  > A + U, 

we can partition H as 

Hi H L ~  HLI 0 
H =  [ 0 Hu3 HM H L ~  0 

0 0 HUI HUZ Hz 

Therow blocks have heights A, (v+l), and ( L h + L w - Y -  

A); and the column blocks have widths (A - Lh),  (U + l), 
(Lh - U - l), (U + l ) ,  and ( L ,  - v - A). The sections 
[HLz, H L ~ ]  and HL3 are both lower triangular and contain 
the “head” of the channel, [Hu,: H u ~ ]  and Hu3 are both 
upper triangular and contain the channel “tail,” HI and Hz 
are tall channel convolution matrices, and HM is Toeplitz. 
Then HWi, is simply the middle row (of blocks) of H, and 
Hwall is the concatenation of the top and bottom rows. 

The limiting behavior for B = HEinHwin is 

B = [ O , H ~ S , H ~ ~ , H L ~ , O ] ~ [ O , H U ~ , H ~ ~ ~ H L ~ ~ O I  

( I  1) 
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Table 1. Achievable bit rate (Mbps) for MSSNR and sym- 
metric,MSSNR designs, using 32-tap TEQs. The channel 
has AWGN but no crosstalk. The signal power was 23 dBm 
and the noise power was -140 dBm/Hz. The CSA channels 
can be obtained at [16]. 

Loop# I MSSNR 1 SYM-MSSNR 
CSAl 1 12.187 I 10.921 

12.493 
11.529 
11.431 
1 1.800 
10.798 
10.880 
9.956 

loss 
10.39% 
4.02% 
0.12% 
2.27% 
2.64% 
1.79% 
0.89% 
3.28% 

As L, and A increase, the only change to B is the size of 
the zero matrices. It can be shown that 

IlBII% = I l % ~ f / 1 ~  5 llhll:. (U + Lh)' ,  (12) 

Since A = H:allH,ai~, it becomes a 5 x 5 block ma- 
where Lh is the channel length. 

trix, with = HTH, and = HTH2. Thus, 

IlAlI$ 2 llHTHilI$ + llHfHzlI$ 
2 llhlli. ( L ,  - Lh ~ u ) .  (13) 

Noting that B = HTH - A, taking the ratio of (12) to (13) 

Theorem 3.2 suggests (heuristically) that in the limit, the 
eigenvectors of A (the MSSNR-UNT solution) converge to 
the eigenvectors of HTH. Since HTH t V L ~ ,  its eigen- 
vectors are symmetric or skew-symmetric. 

and taking the limit completes the proof. 

4. SYMMETRIC TEQ ALGORITHM 

We can force a perfectly symmetric even-length TEQ by 
rewriting wTAw as 

A 

with an analogous definition of B. The MSSNR problem is 
reduced to 

to vTBv = 1. (15) 

Notethat A and B have dimensions L,  x L,, whereas A 
and B have dimensions 9 x We still require a sym- 
metnc generalized eigendecomposttion, but its complexity 
has been reduced by a factor of 4. 

2 .. . 

Table 1 shows the achievable bit rate using a 32-tap 
TEQ, for the MSSNR method 141 and the proposed sym- 
metric MSSNR method. The channels were the eight stan- 
dard CSA test loops. The performance loss for the proposed 
algorithm ranges from 0.1% (loop 3) to 10% (loop l), with 
an average loss of 3%. For some TEQ lengths (not shown), 
the symmetric TEQs have higher bit rates than their uncon- 
strained counterparts. The symmetric MSSNR TEQ design 
has been implemented in the DMT TEQ Toolbox [16]. 
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